Hi, I'm analyzing my data using GEE, which looks like below:
> interact <- geeglm(L ~ O + A + O:A, + data = data1, id = id, + family = binomial, corstr = "ar1") > summary(interact) Call: geeglm(formula = lateral ~ ontask + attachment + ontask:attachment, family = binomial, data = firstgroupnowalking, id = id, corstr = "ar1") Coefficients: Estimate Std.err Wald Pr(>|W|) (Intercept) -1.89133 0.30363 38.80 4.7e-10 *** O 0.00348 0.00100 12.03 0.00052 *** A1 -0.21729 0.37350 0.34 0.56073 A2 -0.14151 0.43483 0.11 0.74486 O:A1 -0.37540 0.16596 5.12 0.02370 * O:A2 -0.27626 0.16651 2.75 0.09708 . --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Estimated Scale Parameters: Estimate Std.err (Intercept) 1.27 0.369 Correlation: Structure = ar1 Link = identity Estimated Correlation Parameters: Estimate Std.err alpha 0.979 0.00586 Number of clusters: 49 Maximum cluster size: 533 I decided to use auto-regression as the correlation structure because of the high auto-correlation of the dependent variable, "L". However, because one of the predictors, "O", also has high time dependency (high autocorrelation), the estimate of "O" (0.00348) seems to be too small. In this case, how shall I interpret the parameter? Should I be using another analysis, such as loglm? Thank you in advance for your help! Sachi [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.