I'm sory for my weak english. I need to analyze this subject : x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y 0 0 1 0 0 1 0 0 1 0 czarne 1 1 0 0 0 0 1 0 0 0 rude 0 0 1 0 0 1 1 0 0 0 braz 0 0 1 0 1 0 1 0 0 0 blond 1 0 0 0 0 1 0 0 0 1 rude 1 1 0 0 0 0 0 0 0 1 blond 0 0 1 1 0 0 0 0 1 0 czarne 1 0 0 1 0 0 1 0 0 0 blond 0 0 1 0 0 1 1 0 0 0 blond 1 0 0 0 0 1 1 0 0 0 czarne 0 0 1 0 0 1 0 0 0 1 czarne 1 0 1 0 0 0 1 0 0 0 czarne 0 0 1 1 0 0 0 0 0 1 braz 0 1 0 1 0 0 0 0 0 1 braz 1 0 1 0 0 0 0 0 1 0 braz 0 0 0 1 1 0 0 0 0 1 blond 1 0 1 0 0 0 0 0 1 0 czarne 0 1 0 0 0 1 0 0 0 1 braz 1 0 0 1 0 0 0 0 0 1 braz 0 0 1 0 0 1 0 0 0 1 braz 0 0 0 1 0 1 0 0 0 1 blond 0 0 1 1 0 0 0 0 0 1 czarne 0 0 1 0 0 1 0 0 0 1 rude 0 0 1 0 0 1 0 0 0 1 braz 0 0 1 0 0 1 1 0 0 0 braz 0 0 1 0 0 1 1 0 0 0 rude 0 0 1 1 0 0 1 0 0 0 braz 1 0 1 0 0 0 0 0 1 0 rude 0 0 0 1 0 1 1 0 0 0 czarne 0 0 1 0 0 1 0 0 1 0 blond 1 0 0 1 0 0 0 0 1 0 blond 0 0 1 0 0 1 1 0 0 0 rude 1 0 0 0 0 1 0 0 0 1 braz 0 0 0 0 1 1 1 0 0 0 blond 0 0 1 1 0 0 0 0 0 1 blond 0 0 1 0 0 1 1 0 0 0 blond 1 0 0 1 0 0 0 0 0 1 blond 1 0 1 0 0 0 1 0 0 0 rude 0 1 0 0 0 1 0 0 1 0 braz 0 1 1 0 0 0 0 0 0 1 czarne 0 0 1 0 0 1 0 1 0 0 blond 0 1 1 0 0 1 0 1 0 0 rude 1 0 0 0 0 1 0 0 0 1 czarne 0 1 1 0 0 0 0 0 1 0 blond 0 0 1 0 0 1 1 0 0 0 rude 0 0 1 0 0 1 0 1 0 0 blond 0 0 1 0 1 0 1 0 0 0 blond 0 1 1 0 0 0 0 1 0 0 braz 0 0 1 1 0 0 0 0 1 0 braz 1 0 0 1 0 0 0 0 0 1 blond 1 1 0 0 0 0 0 0 0 1 czarne 0 1 1 0 0 0 1 0 0 0 rude 1 0 1 0 0 0 0 0 0 1 braz 1 1 0 0 0 0 1 0 0 0 braz 0 0 1 1 0 0 0 0 0 1 czarne 1 1 0 0 0 0 0 0 0 1 blond 1 0 0 1 0 0 1 0 0 0 blond 0 0 1 1 0 0 0 0 0 1 braz 0 0 1 1 0 0 1 0 0 0 czarne 0 0 1 1 0 0 1 0 0 0 czarne
last column is my Y. When i entered this to R i've get model.lda=lda(y~.,dane) Warning message: In lda.default(x, grouping, ...) : variables are collinear > model.lda Call: lda(y ~ ., data = dane) Prior probabilities of groups: blond braz czarne rude 0.3166667 0.2833333 0.2333333 0.1666667 Group means: x1 x2 x3 x4 x5 x6 x7 blond 0.3684211 0.1578947 0.4736842 0.4210526 0.2105263 0.3684211 0.3684211 braz 0.2941176 0.2941176 0.6470588 0.3529412 0.0000000 0.4117647 0.2352941 czarne 0.3571429 0.1428571 0.7142857 0.4285714 0.0000000 0.3571429 0.3571429 rude 0.4000000 0.3000000 0.8000000 0.0000000 0.0000000 0.6000000 0.6000000 x8 x9 x10 blond 0.10526316 0.1578947 0.3684211 braz 0.05882353 0.1764706 0.5294118 czarne 0.00000000 0.2142857 0.4285714 rude 0.10000000 0.1000000 0.2000000 Coefficients of linear discriminants: LD1 LD2 LD3 x1 5.1043768 4.0739211 -2.3626627 x2 5.1972181 2.9748157 -0.3920615 x3 5.9721912 3.0080526 -2.1908394 x4 3.9526576 2.7992826 -2.4115814 x5 2.0778084 5.5095145 -1.6788562 x6 4.9891371 3.5497498 -1.4580874 x7 0.6484504 0.5349203 -0.4412781 x8 -2.2934686 0.8713075 1.4076988 x9 -0.3536417 -0.2746371 -0.4208209 x10 0.2013050 -0.5773421 0.3025799 Proportion of trace: LD1 LD2 LD3 0.6918 0.2574 0.0508 > w=sample(1:60,20) > test=dane[w,] > ucz=dane[-w,] > m=lda(y~.,ucz) > test.x=test[,-11] > klasyfikacja=predict(m,test.x) > table(klasyfikacja$class,test$y) blond braz czarne rude blond 2 1 1 0 braz 2 3 2 1 czarne 0 2 2 0 rude 1 1 1 1 model=rpart(y~.,dane,method="class",control=rpart.control(xval=3,cp=0)) > plot(model) > text(model) model$cptable CP nsplit rel error xerror xstd 1 0.05691057 0 1.0000000 1.097561 0.08180737 2 0.02439024 3 0.8292683 1.219512 0.07040857 3 0.00000000 4 0.8048780 1.195122 0.07310295 npt=which.min(model$table[,4]) > npt integer(0) I need to describe this subject, but i don't know what R is saying to me. This subject is about what women hairs mens like. x1 to x10 are answers to questions 1 is yes,0 is no, but there was 2 groups of questions; from x1 to x6 it must be choisen 2 answers on yes and from x7 to x 10 only 1 on yes. Help me please, i need this to pass this subject. -- View this message in context: http://r.789695.n4.nabble.com/I-need-help-in-analyzing-tp2244886p2244886.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.