Hi all, I've been running loglinear models for three-way tables: one of the variables having three levels, and the other two having two levels each.
An example looks like below: > yes.no <- c("Yes","No") > switch <- c("On","Off") > att <- c("BB","AA","CC") > L <- gl(2,1,12,yes.no) > T <- gl(2,2,12,switch) > A <- gl(3,4,12,att) > n <- c(1136,4998,25,339,305,2752,31,692,251,1677,17,557) > d.table <- data.frame(A,T,L,n) > d.table A T L n 1 BB On Yes 1136 2 BB On No 4998 3 BB Off Yes 25 4 BB Off No 339 5 AA On Yes 305 6 AA On No 2752 7 AA Off Yes 31 8 AA Off No 692 9 CC On Yes 251 10 CC On No 1677 11 CC Off Yes 17 12 CC Off No 557 First, I run the independence model and found a poor fit: > library(MASS) > loglm(n~A+T+L) Call: loglm(formula = n ~ A + T + L) Statistics: X^2 df P(> X^2) Likelihood Ratio 1001.431 7 0 Pearson 1006.287 7 0 Thus, I went on and run the two-way association model and found a good fit: > loglm(n~A:T+A:L+T:L) Call: loglm(formula = n ~ A:T + A:L + T:L) Statistics: X^2 df P(> X^2) Likelihood Ratio 4.827261 2 0.08948981 Pearson 4.680124 2 0.09632168 I compared the independence model (Model1), two-way association model (Model 2), and three-way interaction model (Saturated), and found that the two-way association model was the most parsimonious one: > ind <- loglm(n~A+T+L) > twoway <- loglm(n~A:T+A:L+T:L) > anova(ind,twoway) LR tests for hierarchical log-linear models Model 1: n ~ T + A + L Model 2: n ~ A:L + A:T + T:L Deviance df Delta(Dev) Delta(df) P(> Delta(Dev) Model 1 1001.430955 7 Model 2 4.827261 2 996.603694 5 0.00000 Saturated 0.000000 0 4.827261 2 0.08949 By running a Chi-square test, I found that all of the three two-way associations are significant. > drop1(twoway,test="Chisq") Single term deletions Model: n ~ A:T + A:L + T:L Df AIC LRT Pr(Chi) <none> 24.83 A:T 2 645.91 625.08 < 2.2e-16 *** A:L 2 152.93 132.10 < 2.2e-16 *** T:L 1 143.60 120.77 < 2.2e-16 *** --- Signif. codes: 0 ¡***¢ 0.001 ¡**¢ 0.01 ¡*¢ 0.05 ¡.¢ 0.1 ¡ ¢ 1 Then, I got the coefficients: > coef(twoway) $`(Intercept)` [1] 5.866527 $A BB AA CC 0.27277069 -0.01475892 -0.25801177 $T On Off 1.156143 -1.156143 $L Yes No -1.225228 1.225228 $A.T T A On Off BB 0.4809533 -0.4809533 AA -0.1783651 0.1783651 CC -0.3025882 0.3025882 $A.L L A Yes No BB 0.19166429 -0.19166429 AA -0.15632604 0.15632604 CC -0.03533825 0.03533825 $T.L L T Yes No On 0.2933774 -0.2933774 Off -0.2933774 0.2933774 I, then, hand-calculated odds ratio for A x T, A x L, and T x L. T x L: *èTL *=* e4(.293) *= 3.23 A x L: *èAL(BB vs. AA) *= *e 2(.19166) + 2(.1563) = *2.01 *èAL(BB vs. CC) *= *e 2(.19166) + 2(.03533) = *1.57 A x T: *èAT(BB vs. AA) *= *e 2(.48095) + 2(.17837) = 3.74* * * *èAT(BB vs. CC) = e 2(.48095) + 2(.30259) = 4.79 * Now, I'd like to know if BB and AA (or BB and CC) are significantly different from each other (i.e., the odds of BB to be 2.01 times larger than AA is significant) and the differences between BB and CC are significant (i.e., the odds of BB to be 1.6 times bigger is significant) etc. I'd really appreciate if someone can answer this question! Thank you, Sachi [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.