Dear list, I have a question regarding the meaning of intercept term in a two-way anova model without interaction term.
for example (let's assume there is no interaction between factor1 and factor2) : > df        val       factor1 factor2 1 48.61533      A     t1 2 171.13535      B     t1 3 65.96884      C     t1 4 63.71222      A     t2 5 80.22049      B     t2 6 96.95929      C     t2 7 38.70078      A     t3 8 99.44787      B     t3 9 36.58818      C     t3 the summary of regression : > summary(m) Call: lm(formula = val ~ factor1 + factor2, data = df) Residuals:      1      2      3      4      5      6      7      8      9 -19.040 36.889 -17.849 11.000 -39.084 28.084  8.040  2.195 -10.235 Coefficients:            Estimate Std. Error t value Pr(>|t|) (Intercept)   67.66     25.42  2.661  0.0563 . factor1B      66.59     27.85  2.391  0.0751 . factor1C      16.16     27.85  0.580  0.5928 factor2t2    -14.94     27.85 -0.537  0.6200 factor2t3    -36.99     27.85 -1.328  0.2548 --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 Residual standard error: 34.11 on 4 degrees of freedom Multiple R-squared: 0.6669,    Adjusted R-squared: 0.3338 F-statistic: 2.002 on 4 and 4 DF, p-value: 0.2589 This is contrast treatment, and my question is what the intercept (here is 67.66) represent for? Thank you. Xiaokuan [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.