Concisely, here is what I am trying to do: #I take a random sample of 300 measurements. After I have the measurements #I post stratify them to 80 type A measurements and 220 type B measurements. #These measurements tend to be lognormally distributed so I fit them to #determine the geometric mean and geometric standard deviation of each stratum. #The question is: are the geometric mean and geometric standard deviation of #the type A measurements the same as the geometric mean and geometric #standard deviation of the type B measurements?
library(MASS) library(car) setwd("C:/Documents and Settings/Tom/workspace/Work") source("bagplot.r") #http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=112 #Here are the data. Unknown to me, they are indeed drawn from the same #lognormal distribution X <- cbind(1:300,rlnorm(300,log(30),log(3))) X.A <- X[1:80,2] X.B <- X[81:300,2] #These are the data I see. Fit the type A and type B measurements fit.XA <- fitdistr(X.A,"lognormal") fit.XB <- fitdistr(X.B,"lognormal") #Fit 2000 random samples of size 80 and 220 and calculate the difference in #the GM and GSD for each x <- numeric(2000) y <- numeric(2000) for (i in 1:2000) { k <- sample(X[,1],80,replace=FALSE) x.a <- X[k,2] x.b <- X[setdiff(1:300,k),2] fit.xa <- fitdistr(x.a,"lognormal") fit.xb <- fitdistr(x.b,"lognormal") x[i] <- coef(fit.xa)[1] - coef(fit.xb)[1] y[i] <- coef(fit.xa)[2] - coef(fit.xb)[2] } #Create the bagplot and superimpose the 95% joint normal confidence ellipse. #Does the difference in GM and GSD actually observed for the type A and type B #measurements look like the result of the random draw? bagplot(x,y,show.whiskers=FALSE,approx.limit=1000) data.ellipse(x,y,plot.points=FALSE,levels=c(0.95),col="black",center.cex=0) box() points(coef(fit.XA)[1]-coef(fit.XB)[1],coef(fit.XA)[2]-coef(fit.XB)[2], cex=1.5,col="black",pch=19) -- View this message in context: http://n4.nabble.com/Ellipse-that-Contains-95-of-the-Observed-Data-tp1694538p1695134.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.