This is because pairwise.student.t and TukeyHSD use differents estimates for error term. TukeyHSD use the parameters covariance matrix and t use sample variance. In this case a treatment with only one value doesn't have sample variance but has a estimated standard error in a covariance matrix. The lines below will illustrate the point:
# toy data da <- data.frame(A=factor(rep(c("a","b","c"), c(1,5,7)))) da$y <- rnorm(da$A) # sample variance tapply(da$y, da$A, var) pairwise.t.test(da$y, da$A, p.adj="none") # problem! # model and covariance matriz m0 <- aov(y~A, da) vcov(m0) TukeyHSD(m0) # no problem! Walmes. ----- ..ooo0 ................................................................................................... ..(....)... 0ooo... Walmes Zeviani ...\..(.....(.....)... Master in Statistics and Agricultural Experimentation ....\_)..... )../.... walmeszevi...@hotmail.com, Lavras - MG, Brasil ............ (_/............................................................................................ -- View this message in context: http://n4.nabble.com/Expected-pairwise-student-t-and-TukeyHSD-behavior-tp1690100p1690136.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.