Try this: lm(a.ts ~ factor(cycle(a.ts)) - 1)
On Thu, Mar 18, 2010 at 12:30 PM, Len Vir <len...@gmail.com> wrote: > # Dear List, > > # I want to characterize a time series according to its Quarter components. > > # My data ("a.ts": > http://docs.google.com/View?id=dfvvwzr2_478cr9k4cdb) look like: > > # Qtr1 Qtr2 Qtr3 Qtr4 > # 1948 -0.0714961837 0.0101747827 0.0654816569 -0.0227830729 > # 1949 -0.1175517556 0.1151378692 0.1015777858 -0.1971535900 > # 1950 0.0716002123 0.2551020416 0.0977574743 -0.0739337411 > # ... > > > # The time series is 216 long > > # The easiest way I could figure out, is to create > # Quarter dummies: > > Q1 <- rep(c(1,0,0,0),54) > Q2 <- rep(c(0,1,0,0),54) > Q3 <- rep(c(0,0,1,0),54) > Q4 <- rep(c(0,0,0,1),54) > > qtr <- cbind(Q1,Q2,Q3,Q4) > > # and then regress my data on the dummies. > > summary(lm(a.ts ~ qtr - 1)) > > # The regression on 'Quarters' works fine. > # It does exactly what I want it to do. > > # But! Surely there must be a more elegant way > # to accomplish the same thing ?! > > # I have looked at the following packages (amongst others): > # tseries, timeSeries, TSA, AER, fSeries, vars, FinTS, xts, fArma, > # fRegression, tsfa, uroot, urca, ... > > # without finding anything more convenient (simpler, nicer!). > > # Any suggestion? > > # Thank you. > > # Len Vir > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.