Hello, I have noticed a bug with LSSVM implementation in R. It could be a bug with the LSSVM itself that causes this problem.
I thought I should post this message to see if anyone else is familiar with this problem and explain why the result is different for odd and even number of cases. Once the hyperplane is found using LSSVM, the prediction results vary when you predict odd or even number of samples. Why? Here I provide e.g. with Iris data in R, keep reducing prediction cases one-by-one, you will see the discrepancy I am talking about. In my own data, this discrepancy between odd and even number of cases is enhanced by a huge factor. Thanks, Parmee iris <- unique(iris) rbf <- rbfdot(0.5) lssvm> k <- kernelMatrix(rbf, as.matrix(iris[,-5])) lssvm> klir <- lssvm(k, iris[, 5]) lssvm> pre <- predict(klir, k) > ktest <- as.kernelMatrix(k[1:148,]) > pretest <- predict(klir, ktest) > table(pretest,iris[1:148,5]) pretest setosa versicolor virginica setosa 50 0 0 versicolor 0 49 2 virginica 0 1 46 > ktest2 <- as.kernelMatrix(k[1:147,]) > pretest2 <- predict(klir, ktest2) > table(pretest2,iris[1:147,5]) pretest2 setosa versicolor virginica setosa 50 0 0 versicolor 0 49 4 virginica 0 1 43 > ktest3 <- as.kernelMatrix(k[1:146,]) > pretest3 <- predict(klir, ktest3) > table(pretest3,iris[1:146,5]) pretest3 setosa versicolor virginica setosa 50 0 0 versicolor 0 49 2 virginica 0 1 44 > ktest4 <- as.kernelMatrix(k[1:145,]) > pretest4 <- predict(klir, ktest4) > table(pretest4,iris[1:145,5]) pretest4 setosa versicolor virginica setosa 50 0 0 versicolor 0 49 2 virginica 0 1 43 > ktest5 <- as.kernelMatrix(k[1:144,]) > pretest5 <- predict(klir, ktest5) > table(pretest5,iris[1:144,5]) pretest5 setosa versicolor virginica setosa 50 0 0 versicolor 0 49 4 virginica 0 1 40 > ktest6 <- as.kernelMatrix(k[1:143,]) > pretest6 <- predict(klir, ktest6) > table(pretest6,iris[1:143,5]) pretest6 setosa versicolor virginica setosa 50 0 0 versicolor 0 49 2 virginica 0 1 41 > ktest7 <- as.kernelMatrix(k[1:142,]) > pretest7 <- predict(klir, ktest7) > table(pretest7,iris[1:142,5]) pretest7 setosa versicolor virginica setosa 50 0 0 versicolor 0 49 2 virginica 0 1 40 > pretest8 <- predict(klir, ktest8) > ktest8 <- as.kernelMatrix(k[1:141,]) > table(pretest8,iris[1:141,5]) pretest8 setosa versicolor virginica setosa 50 0 0 versicolor 0 49 4 virginica 0 1 37 > ktest9 <- as.kernelMatrix(k[1:140,]) > pretest9 <- predict(klir, ktest9) > table(pretest9,iris[1:140,5]) pretest9 setosa versicolor virginica setosa 50 0 0 versicolor 0 49 2 virginica 0 1 38 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.