Dear All I am quite new to R and would appreciate some help fitting 95% confidence intervals to a nls function. I have the data
DOY CET 90 5.9 91 8 92 8.4 93 7.7 95 6.6 96 6.8 97 7.1 98 9.7 99 12.3 100 12.8 102 11 103 9.3 104 9.8 105 9.9 107 7.7 110 6.2 111 5.9 112 5.9 113 3.4 114 3.5 116 3.3 117 5.4 118 6.3 119 9.7 120 11.2 121 7.3 124 7.8 etc I am trying to use some code that has been previously posted on the help boards but keep getting an error message "dim(X) must have a positive length" plot(DOY, CET) model<-nls(CET~a+(b*sin(((2*pi)/365)*(DOY+t))),start=list(a=9.5, b=-6.5, t=65)) summary(model) days<-seq(0,365,1) predict(model,list(DOY=days)) se.fit <- sqrt(apply(attr(predict(model,list(DOY = days)),"gradient"),1, function(x) sum(vcov(fm)*outer(x,x)))) matplot(days, predict(model,list(DOY = days))+ outer(se.fit,qnorm(c(.5, .025,.975))),type="l") Any help would be greatly appreciated Best wishes Tom -- View this message in context: http://n4.nabble.com/Confidence-intervals-nls-tp1556487p1556487.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.