Dear All

I am quite new to R and would appreciate some help fitting 95% confidence
intervals to a nls function. I have the data

DOY       CET
90      5.9
91      8
92      8.4
93      7.7
95      6.6
96      6.8
97      7.1
98      9.7
99      12.3
100     12.8
102     11
103     9.3
104     9.8
105     9.9
107     7.7
110     6.2
111     5.9
112     5.9
113     3.4
114     3.5
116     3.3
117     5.4
118     6.3
119     9.7
120     11.2
121     7.3
124     7.8
etc  

I am trying to use some code that has been previously posted on the help
boards but keep getting an error message "dim(X) must have a positive
length"

plot(DOY, CET)
model<-nls(CET~a+(b*sin(((2*pi)/365)*(DOY+t))),start=list(a=9.5, b=-6.5,
t=65))
summary(model)
days<-seq(0,365,1)
predict(model,list(DOY=days))

se.fit <- sqrt(apply(attr(predict(model,list(DOY = days)),"gradient"),1, 
                  function(x) sum(vcov(fm)*outer(x,x)))) 
matplot(days, predict(model,list(DOY = days))+ 
               outer(se.fit,qnorm(c(.5, .025,.975))),type="l") 

Any help would be greatly appreciated 

Best wishes

Tom 

-- 
View this message in context: 
http://n4.nabble.com/Confidence-intervals-nls-tp1556487p1556487.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to