Hi,
I calculated the linear predictors derived from weibull model using ovarian 
data sets. I calculated the linear predictors as the sum of covariates weighted 
by the weibull coefficients and compared to the linear predictors generated by 
survreg function. Why are they different? note that the first element of 
coefficients vector is intercept was excluded in my calculation.

Look forward to your reply,

Carol

--------------------------------------------------
data(ovarian)
library(survival)
survreg.obj = survreg(Surv(ovarian[,1],ovarian[,2])~age +resid.ds +rx 
+ecog.ps,ovarian, dist = "weibull", scale = 1)
> survreg.obj$linear.predictors
 [1] 5.298074 5.108976 5.558852 7.584172 7.221841 7.202655 7.019320 6.764081
 [9] 6.011550 7.939097 7.174129 8.634805 6.783737 7.261585 8.955989 8.366687
[17] 7.970807 8.489844 8.302639 8.385361 7.553247 4.855690 7.851908 7.235689
[25] 6.616655 7.917497

*******************

lp = survreg.obj$coefficients[2:5]%*%t(ovarian[,3:6])
> lp
             1         2         3         4         5         6         7
[1,] -7.484549 -7.673647 -7.223771 -5.198451 -5.560782 -5.579968 -5.763303
             8         9        10        11        12        13        14
[1,] -6.018542 -6.771073 -4.843526 -5.608495 -4.147818 -5.998886 -5.521038
            15        16        17        18        19        20        21
[1,] -3.826634 -4.415936 -4.811816 -4.292779 -4.479984 -4.397262 -5.229376
            22        23        24        25        26
[1,] -7.926933 -4.930715 -5.546934 -6.165968 -4.865126

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to