Hi, I calculated the linear predictors derived from weibull model using ovarian data sets. I calculated the linear predictors as the sum of covariates weighted by the weibull coefficients and compared to the linear predictors generated by survreg function. Why are they different? note that the first element of coefficients vector is intercept was excluded in my calculation.
Look forward to your reply, Carol -------------------------------------------------- data(ovarian) library(survival) survreg.obj = survreg(Surv(ovarian[,1],ovarian[,2])~age +resid.ds +rx +ecog.ps,ovarian, dist = "weibull", scale = 1) > survreg.obj$linear.predictors [1] 5.298074 5.108976 5.558852 7.584172 7.221841 7.202655 7.019320 6.764081 [9] 6.011550 7.939097 7.174129 8.634805 6.783737 7.261585 8.955989 8.366687 [17] 7.970807 8.489844 8.302639 8.385361 7.553247 4.855690 7.851908 7.235689 [25] 6.616655 7.917497 ******************* lp = survreg.obj$coefficients[2:5]%*%t(ovarian[,3:6]) > lp 1 2 3 4 5 6 7 [1,] -7.484549 -7.673647 -7.223771 -5.198451 -5.560782 -5.579968 -5.763303 8 9 10 11 12 13 14 [1,] -6.018542 -6.771073 -4.843526 -5.608495 -4.147818 -5.998886 -5.521038 15 16 17 18 19 20 21 [1,] -3.826634 -4.415936 -4.811816 -4.292779 -4.479984 -4.397262 -5.229376 22 23 24 25 26 [1,] -7.926933 -4.930715 -5.546934 -6.165968 -4.865126 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.