Hi, I am doing a binomial GLMM with a random intercept using the formula below, but I always get the same warning message.
> m01 <- lmer(pres~ HT + DN + dtree + DNm + cmnhi + cmxes + cplan + craan + lfphal0100 + lfov0100 + lfop0100 + (1|plot), family=binomial, data=vphal, verbose=TRUE) 0: 6309.9448: 0.459924 -5.20747 -0.378722 0.558779 -0.200922 -0.0488451 -0.397844 0.367916 -2.09820 0.233011 0.489537 0.156096 0.233738 1: 5328.6489: 1.44553 -5.30486 -0.331482 0.584113 -0.178051 -0.0525247 -0.374922 0.323662 -2.00877 0.204221 0.517675 0.123727 0.183290 2: 5102.8094: 1.90302 -6.00849 -0.122106 0.800716 -0.0894924 -0.161499 -0.336434 0.351752 -1.73945 0.117255 0.419783 0.428155 0.205801 3: 5047.7542: 1.97542 -6.03480 -0.190565 0.764629 -0.139488 -0.185599 -0.353159 0.435037 -1.79551 0.139551 0.427923 0.436322 0.198042 ... 63: 4869.7669: 2.38299 -6.96339 -0.272766 0.911792 -0.340779 -0.295437 -0.436908 0.777541 -1.94732 0.191853 0.419920 0.514350 0.165871 64: 4869.7669: 2.38299 -6.96339 -0.272766 0.911792 -0.340779 -0.295437 -0.436908 0.777541 -1.94732 0.191853 0.419920 0.514350 0.165871 65: 4869.7669: 2.38299 -6.96339 -0.272766 0.911792 -0.340779 -0.295437 -0.436908 0.777541 -1.94732 0.191853 0.419920 0.514350 0.165871 66: 4869.7669: 2.38299 -6.96339 -0.272766 0.911792 -0.340779 -0.295436 -0.436908 0.777541 -1.94732 0.191853 0.419920 0.514350 0.165871 67: 4869.7669: 2.38299 -6.96339 -0.272766 0.911792 -0.340779 -0.295436 -0.436908 0.777541 -1.94732 0.191853 0.419920 0.514350 0.165871 Warning message: In mer_finalize(ans) : false convergence (8) > I read the various posts in the R-help list about it, and followed their advice. I standardized the fixed factors and also used glmer with nAGQ, but I still get the same warning message. Is it possible to get this error when the number of zeros in the response variable is very high? I have 30281 observations grouped in 2402 plots (=random factor); 1299 observations from the 30281 correspond to presences, and the rest to absences. Which is the most appropriate way to overcome this problem? Do you know of any pdf or book providing a detailed and friendly description of the use of lmer and glmer functions, and the use of LA or nAGQ approximations in GLMM? I read Zuur et al (2009), but they do not provide any recommendation about the use of LA vs nAGQ under different conditions. Thank you very much in advance. NĂºria [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.