Hello, I know there must be a simple soluton to this problem but it eludes me currently.
My data is partitioned into two subsets, each subset has a common column factor but with varying levels: levels(fdf_ghc$AgeDemo) [1] "26TO35" "36TO45" "46TO55" "56TO65" "66TO75" "76TO85" levels(fdf_ghcnull$AgeDemo) [1] "26TO35" "36TO45" "46TO55" "56TO65" "66TO75" "76TO85" "86TO100" table(fdf_ghc$AgeDemo) 26TO35 36TO45 46TO55 56TO65 66TO75 76TO85 6 14 21 31 19 14 table(fdf_ghcnull$AgeDemo) 26TO35 36TO45 46TO55 56TO65 66TO75 76TO85 86TO100 5 5 10 7 8 4 1 I need to construct a common contingency table from the two lists, but rbind recycles values due to the differing levels: rbind(table(fdf_ghc$AgeDemo), table(fdf_ghcnull$AgeDemo)) 26TO35 36TO45 46TO55 56TO65 66TO75 76TO85 86TO100 [1,] 6 14 21 31 19 14 6 [2,] 5 5 10 7 8 4 1 Warning message: In rbind(table(fdf_ghc$AgeDemo), table(fdf_ghcnull$AgeDemo)) : number of columns of result is not a multiple of vector length (arg 1) I need something I can pass to fisher.test() or chisq.test(). Anybody have any hints? Thanks, Ben [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.