I have the following code, which tests the split on a data.frame and the split on each column (as vector) separately. The runtimes are of 10 time difference. When m and k increase, the difference become even bigger.
I'm wondering why the performance on data.frame is so bad. Is it a bug in R? Can it be improved? > system.time(split(as.data.frame(x),f)) user system elapsed 1.700 0.010 1.786 > > system.time(lapply( + 1:dim(x)[[2]] + , function(i) { + split(x[,i],f) + } + ) + ) user system elapsed 0.170 0.000 0.167 ########### m=30000 n=6 k=3000 set.seed(0) x=replicate(n,rnorm(m)) f=sample(1:k, size=m, replace=T) system.time(split(as.data.frame(x),f)) system.time(lapply( 1:dim(x)[[2]] , function(i) { split(x[,i],f) } ) ) ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.