milton ruser <milton.ruser <at> gmail.com> writes: > > Hi there, > > Could you provide a minimum reproducible code, please. > Bests > > milton > > On Tue, Dec 1, 2009 at 6:11 PM, <rkevinburton <at> charter.net> wrote: > > > If I have data that I feed into shapio.test and jarque.bera.test yet they > > seem to disagree. What do I use for a decision? > > > > For my data set I have p.value of 0.05496421 returned from the shapiro.test > > and 0.882027 returned from the jarque.bera.test. I have included the data > > set below. > > > > Thank you. > > > > Kevin
It depends why you are testing for normality. How big a departure are you looking for, and how will those departures affect your inference? How easily can you adopt a robust approach so that it won't matter so much if the data are normally distributed? ## "Residuals" data only x = c(-0.449735723758323, 0.281461045050074, 0.591383050911335, 0.239998659520616, 0.00343879474063987, -2.64372061292663, 0.381630655290173, -1.79543281552347, 1.90631012440313, -0.256232543929779, 1.83452602676812, -1.06869719416837, 1.04378655286183, 0.232655831328322, -0.939084802643773, 0.854132879285335, -1.71217066877156, 1.28040273099582, -0.386415431325857, -0.769127669783483, -0.810996835089867, 0.0477292147635991, 0.294672848750557, -0.0841330473924862, 0.231663729192233, -0.601790650547443, 0.285635768516625, -0.96315495955862, 1.52188112949994, -0.826092842933196, 1.91937201229077, -0.317789483136924, -0.865011007394312, -0.0281604973711276, -0.123887049811822, -0.0327727730592468, -0.0654939600771254, 0.279247739913908, 0.167606602923418, 0.189533097427477, 0.402062194225847, 1.97150984262995, -2.27538477532968, 1.89091792097945, 0.0251732151287081, -0.2349741808124, -0.659332058368173, 0.127284768034285, -1.42838560676513, 0.617689775286461, -0.034243005247084, -0.304574261133836, 0.128679369916751, -0.657479389968652, 0.608766068692517, 1.928147708694, -0.172644961366165, -0.453255508263169, -1.09903330959344) shapiro.test(x) library(tseries) jarque.bera.test(x) ## Replicates results: p=0.059 vs 0.88 ## Wikipedia article on Jarque-Bera test suggests chi-squared ## approximation isn't very good for small-to-moderate data sets qqnorm(x) ## or ... library(lattice) qqmath(~x, prepanel = prepanel.qqmathline, panel = function(x, ...) { panel.qqmathline(x, ...) panel.qqmath(x, ...) }) hist(x) ## and just to add to the confusion ... library(nortest) ad.test(x) Bottom line: I would say the data don't *look* particularly normal, and the anderson-darling test fairly conclusively rejects normality, but it really depends what you want to do with the data ... ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.