Marcelo Laia wrote:
Dear list member,

My question is related to input file format to an Anova from car package.

Here is an example of what I did:

My file format is like this (and I dislike the idea that I will need
to recode it):

Hormone day Block Treatment Plant Diameter High N.Leaves
SH 23 1 1 1 3.19 25.3 2
SH 23 1 1 2 3.42 5.5 1
SH 23 1 2 1 2.19 5.2 2
SH 23 1 2 2 2.17 7.6 2
CH 23 1 1 1 3.64 6.5 2
CH 23 1 1 2 2.8 3.7 2
CH 23 1 2 1 3.28 4 2
CH 23 1 2 2 2.82 5.2 2
SH 23 2 1 1 2.87 6.4 2
SH 23 2 1 2 2.8 6 2
SH 23 2 2 1 2.02 4.5 2
SH 23 2 2 2 3.15 5.5 2
CH 23 2 1 1 3.22 2.3 2
CH 23 2 1 2 2.45 3.8 2
CH 23 2 2 1 1.85 3.5 2
CH 23 2 2 2 3.13 4.4 2
CH 39 1 1 1 2.64 6 2
CH 39 1 1 2 4.33 10 2
CH 39 1 2 1 3.74 9 2
CH 39 1 2 2 3.23 8 2
SH 39 1 1 1 3.8 8 2
SH 39 1 1 2 2.35 9 2
SH 39 1 2 1 3.66 6 2
SH 39 1 2 2 3.92 7 2
CH 39 2 1 1 3.28 7 2
CH 39 2 1 2 4.99 7 2
CH 39 2 2 1 2.49 6 2
CH 39 2 2 2 4.75 7 2
SH 39 2 1 1 3.35 5 2
SH 39 2 1 2 4.38 7 2
SH 39 2 2 1 5.11 9 2
SH 39 2 2 2 2.71 5 2

idata <- data.frame(Idade=factor(c(23,39)))
a = read.table("clipboard", sep=" ", head=T)
mod.ok <- lm(Diameter ~  Treatment*Hormone, data=a)
av.ok <- Anova(mod.ok, idata=idata, idesign=~as.factor(day))
summary(av.ok)
     Sum Sq               Df           F value            Pr(>F)
 Min.   : 0.02153   Min.   : 1.00   Min.   :0.02828   Min.   :0.5105
 1st Qu.: 0.06169   1st Qu.: 1.00   1st Qu.:0.06346   1st Qu.:0.6331
 Median : 0.20667   Median : 1.00   Median :0.09863   Median :0.7558
 Mean   : 5.43711   Mean   : 7.75   Mean   :0.19043   Mean   :0.7113
 3rd Qu.: 5.58208   3rd Qu.: 7.75   3rd Qu.:0.27150   3rd Qu.:0.8117
 Max.   :21.31356   Max.   :28.00   Max.   :0.44437   Max.   :0.8677
                                    NA's   :1.00000   NA's   :1.0000

This result is wrong, I believe.

It's wrong because your use of Anova is inappropriate here.
mod.ok should be an object of class "mlm" for this use of Anova.

 class(mod.ok)

or

 str(mod.ok)

would be useful.
See below for further comments.

Here, is a file format with repeated measures side-by-side:

Hormone Block Treatment Plant Diameter.23 Diameter.39 High.23 High.39
N.Leaves.23 N.Leaves.39
SH 1 1 1 3.19 2.64 25.3 6 2 2
SH 1 1 2 3.42 4.33 5.5 10 1 2
SH 1 2 1 2.19 3.74 5.2 9 2 2
SH 1 2 2 2.17 3.23 7.6 8 2 2
CH 1 1 1 3.64 3.8 6.5 8 2 2
CH 1 1 2 2.8 2.35 3.7 9 2 2
CH 1 2 1 3.28 3.66 4 6 2 2
CH 1 2 2 2.82 3.92 5.2 7 2 2
SH 2 1 1 2.87 3.28 6.4 7 2 2
SH 2 1 2 2.8 4.99 6 7 2 2
SH 2 2 1 2.02 2.49 4.5 6 2 2
SH 2 2 2 3.15 4.75 5.5 7 2 2
CH 2 1 1 3.22 3.35 2.3 5 2 2
CH 2 1 2 2.45 4.38 3.8 7 2 2
CH 2 2 1 1.85 5.11 3.5 9 2 2
CH 2 2 2 3.13 2.71 4.4 5 2 2

idata <- data.frame(day=factor(c(23,39)))
a = read.table("clipboard", sep=" ", head=T)
mod.ok <- lm(cbind(Diameter.23,Diameter.39)  ~  Treatment*Hormone, data=a)
av.ok <- Anova(mod.ok, idata=idata, idesign= ~ as.factor(day))
summary(av.ok)

Type II Repeated Measures MANOVA Tests:

------------------------------------------

Term: Treatment

 Response transformation matrix:
            (Intercept)
Diameter.23           1
Diameter.39           1

Sum of squares and products for the hypothesis:
            (Intercept)
(Intercept)   0.6765062

Sum of squares and products for error:
            (Intercept)
(Intercept)    13.05917

Multivariate Tests: Treatment
                 Df test stat  approx F num Df den Df  Pr(>F)
Pillai            1 0.0492517 0.6216377      1     12 0.44574
Wilks             1 0.9507483 0.6216377      1     12 0.44574
Hotelling-Lawley  1 0.0518031 0.6216377      1     12 0.44574
Roy               1 0.0518031 0.6216377      1     12 0.44574

------------------------------------------

Term: Hormone

 Response transformation matrix:
            (Intercept)
Diameter.23           1
Diameter.39           1

Sum of squares and products for the hypothesis:
            (Intercept)
(Intercept)  0.09150625

Sum of squares and products for error:
            (Intercept)
(Intercept)    13.05917

Multivariate Tests: Hormone
                 Df test stat   approx F num Df den Df  Pr(>F)
Pillai            1 0.0069583 0.08408456      1     12 0.77679
Wilks             1 0.9930417 0.08408456      1     12 0.77679
Hotelling-Lawley  1 0.0070070 0.08408456      1     12 0.77679
Roy               1 0.0070070 0.08408456      1     12 0.77679

------------------------------------------

Term: Treatment:Hormone

 Response transformation matrix:
            (Intercept)
Diameter.23           1
Diameter.39           1

Sum of squares and products for the hypothesis:
            (Intercept)
(Intercept)    1.139556

Sum of squares and products for error:
            (Intercept)
(Intercept)    13.05917

Multivariate Tests: Treatment:Hormone
                 Df test stat approx F num Df den Df  Pr(>F)
Pillai            1 0.0802576 1.047132      1     12 0.32636
Wilks             1 0.9197424 1.047132      1     12 0.32636
Hotelling-Lawley  1 0.0872610 1.047132      1     12 0.32636
Roy               1 0.0872610 1.047132      1     12 0.32636

------------------------------------------

Term: as.factor(day)

 Response transformation matrix:
            as.factor(day)1
Diameter.23               1
Diameter.39              -1

Sum of squares and products for the hypothesis:
                as.factor(day)1
as.factor(day)1        11.78206

Sum of squares and products for error:
                as.factor(day)1
as.factor(day)1        15.41527

Multivariate Tests: as.factor(day)
                 Df test stat approx F num Df den Df   Pr(>F)
Pillai            1 0.4332063 9.171726      1     12 0.010496 *
Wilks             1 0.5667937 9.171726      1     12 0.010496 *
Hotelling-Lawley  1 0.7643105 9.171726      1     12 0.010496 *
Roy               1 0.7643105 9.171726      1     12 0.010496 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

------------------------------------------

Term: Treatment:as.factor(day)

 Response transformation matrix:
            as.factor(day)1
Diameter.23               1
Diameter.39              -1

Sum of squares and products for the hypothesis:
                as.factor(day)1
as.factor(day)1        1.139556

Sum of squares and products for error:
                as.factor(day)1
as.factor(day)1        15.41527

Multivariate Tests: Treatment:as.factor(day)
                 Df test stat approx F num Df den Df  Pr(>F)
Pillai            1 0.0688353 0.887086      1     12 0.36484
Wilks             1 0.9311647 0.887086      1     12 0.36484
Hotelling-Lawley  1 0.0739238 0.887086      1     12 0.36484
Roy               1 0.0739238 0.887086      1     12 0.36484

------------------------------------------

Term: Hormone:as.factor(day)

 Response transformation matrix:
            as.factor(day)1
Diameter.23               1
Diameter.39              -1

Sum of squares and products for the hypothesis:
                as.factor(day)1
as.factor(day)1       0.1501563

Sum of squares and products for error:
                as.factor(day)1
as.factor(day)1        15.41527

Multivariate Tests: Hormone:as.factor(day)
                 Df test stat  approx F num Df den Df  Pr(>F)
Pillai            1 0.0096468 0.1168889      1     12 0.73835
Wilks             1 0.9903532 0.1168889      1     12 0.73835
Hotelling-Lawley  1 0.0097407 0.1168889      1     12 0.73835
Roy               1 0.0097407 0.1168889      1     12 0.73835

------------------------------------------

Term: Treatment:Hormone:as.factor(day)

 Response transformation matrix:
            as.factor(day)1
Diameter.23               1
Diameter.39              -1

Sum of squares and products for the hypothesis:
                as.factor(day)1
as.factor(day)1      0.04305625

Sum of squares and products for error:
                as.factor(day)1
as.factor(day)1        15.41527

Multivariate Tests: Treatment:Hormone:as.factor(day)
                 Df test stat   approx F num Df den Df Pr(>F)
Pillai            1 0.0027853 0.03351708      1     12 0.8578
Wilks             1 0.9972147 0.03351708      1     12 0.8578
Hotelling-Lawley  1 0.0027931 0.03351708      1     12 0.8578
Roy               1 0.0027931 0.03351708      1     12 0.8578

Univariate Type II Repeated-Measures ANOVA Assuming Sphericity

                                     SS num Df Error SS den Df      F  Pr(>F)
Treatment                        0.3383      1   6.5296     12 0.6216 0.44574
Hormone                          0.0458      1   6.5296     12 0.0841 0.77679
Treatment:Hormone                0.5698      1   6.5296     12 1.0471 0.32636
as.factor(day)                   5.8910      1   7.7076     12 9.1717 0.01050 *
Treatment:as.factor(day)         0.5698      1   7.7076     12 0.8871 0.36484
Hormone:as.factor(day)           0.0751      1   7.7076     12 0.1169 0.73835
Treatment:Hormone:as.factor(day) 0.0215      1   7.7076     12 0.0335 0.85779
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


This works because you now have mod.ok as an "mlm" object.



How I could use Anova from the first file format? If not, could you
suggest me a way to recode my data file in R?

I ask because I don't know how I can recode my data file on R. Is ti possible?

Let's call your first data.frame dat.long. Then you can use:

 dat.wide <- reshape(dat, timevar="day",
              idvar = c("Hormone", "Block", "Treatment", "Plant"),
              direction = "wide")

Note that the two data frames you give are not consistent.

You could also investigate the reshape package which makes a
lot of reshaping easier.

 -Peter Ehlers


Thank you very much!


______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to