Dear all, I am trying to recreate a discriminant analysis in R based on the article from "Dong,J.-J.,etal.,Discriminant analysis of the geomorphic characteristics and stability of landslide dams, Geomorphology (2009)". I used lda (MASS) to determine the discriminant functions but I noticed that it is not the same as in the paper.
I have three questions (1) Why does results from lda() does not show a constant? Isnt the discriminant function supposed to be D = a + b1*x1 + b2*x2 + ... + bm*xm? If there is one, where can I find it? (2) Why are the linear discriminant coefficients different from the paper? The discriminant function in the paper is: D = − 2.62*log10(Peak.flow) − 4.67*log10(Dam.height) + 4.57*log10(Dam.width) +2.67*log10(Dam.Length) +8.26 (He used SPSS for the analysis) (3) I used manova to perform the Wilks test. However, I am missing the significant values for the Wilks test. How come? I know these are newbie questions but I hope someone out there may have the answer. Thanks all Here is the code I used for the Linear Discriminant Analysis: >criteria<-c("Catchment.area", "Stream.order", "Mean.flow", "Peak.flow","UCG", >"DCG","Landslide.volume","Landslide.area","HTD", "Slope.height","Dam.height", "Dam.width", "Dam.length", "Lake.depth", "Lake.area", "Dam.volume","SClass") >tabcrit<-subset(tabata, rowSums(is.na(tabata[criteria]))==0) >tabcrit<-tabcrit[criteria] >stabledams<-subset(tabcrit, SClass=="Stable") >unstabledams<-subset(tabcrit, SClass=="Unstable") >st<-sample(nrow(stabledams)) >ust<-sample(nrow(unstabledams)) >training <- rbind(stabledams[st[1:5], ], unstabledams[ust[1:17],]) >tr.lda<-lda(SClass~log10(Catchment.area)+log10(Dam.height)+log10(Dam.width)+log10(Dam.length), > data=training) >tr.lda Coefficients of linear discriminants: LD1 log10(Catchment.area) 1.0967609 log10(Dam.height) 0.9818473 log10(Dam.width) -1.9813511 log10(Dam.length) -0.7131808 For the Wilks test: >tr.matrix<-as.matrix(training[-17]) >tr.manova<-manova(tr.matrix~training$SClass) >tr.wilks<-summary(tr.manova, test="Wilks") > tr.wilks Df Wilks approx F num Df den Df Pr(>F) training$SClass 1 0.29328 0.75303 16 5 0.6979 Residuals 20 Cheers, Julius Tesoro
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.