While building a package, I see the following:

* checking R code for possible problems ... NOTE
cheat.fit: no visible binding for global variable 'Zobs'
plot.jml: no visible binding for global variable 'Var1'

I see the issue has come up before, but I'm having a hard time discerning how 
solutions applied elsewhere would apply here. The entire code for both 
functions is below, but the only place the variable "Zobs" appears in the 
function cheat.fit is:

cheaters <- cbind(data.frame(cheaters), exactMatch)
                names(cheaters)[1] <- 'Zobs'
                names(cheaters)[2] <- 'Nexact'
                cheaters$Zcrit <- Zcrit
                cheaters$Mean <- means
                cheaters$Var <- vars
                cheaters <- subset(cheaters, Zobs >= Zcrit)
                result <-  list("pairs" = c(row.names(cheaters)), "Ncheat" = 
nrow(cheaters),
                "TotalCompare" = totalCompare, "alpha" = alpha,
                "ExactMatch" = cheaters$Nexact, "Zobs" = cheaters$Zobs, "Zcrit" 
= Zcrit,
                "Mean" = cheaters$Mean, "Variance" = cheaters$Var, "Probs" = 
stuProbs)
                result

and the only place Var1 appears in the plot function is here

prop.correct <- subset(data.frame(prop.table(table(tmp[, i+1], tmp$Estimate), 
margin=2)), Var1 == 1)[, 2:3]

Many thanks,
Harold

> sessionInfo()
R version 2.10.0 (2009-10-26)
i386-pc-mingw32

locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base

cheat.fit <- function(dat, key, wrongChoice, alpha = .01, rfa = c('nr', 'uni', 
'bsct'), bonf = c('yes','no'), con = 1e-12, lower = 0, upper = 50){
                bonf <- tolower(bonf)
                bonf <- match.arg(bonf)
                rfa  <- match.arg(rfa)
                rfa  <- tolower(rfa)
                dat <- t(dat)
                correctStuMat <- numeric(ncol(dat))
                for(i in 1:ncol(dat)){
                                correctStuMat[i] <- mean(key==dat[,i], na.rm= 
TRUE)
                }

                correctClsMat <- numeric(length(key))
                for(i in 1:length(key)){
                                correctClsMat[i] <- mean(key[i]==dat[i,], 
na.rm= TRUE)
                }

                ### this is here for cases if all students in a class
                ### did not answer the item
                correctClsMat[is.na(correctClsMat)] <- 0

                pCorr <- function(R,c,q){

                numer <- function(R,a,c,q){
                                result <- sum((1-(1-R)^a)^(1/a), na.rm= 
TRUE)-c*q
        result
                }

    denom <- function(R,a,c,q){
                                result <- sum(na.rm= TRUE, -((1 - (1 - 
R)^a)^(1/a) * (log((1 - (1 - R)^a)) * (1/a^2)) +
                                (1 - (1 - R)^a)^((1/a) - 1) * ((1/a) * ((1 - 
R)^a * log((1 - R))))))
                                result
    }

                aConst <- function(R, c, q, con){
                                a <- .5 # starting value for a
                                change <- 1
                                while(abs(change) > con) {
                                                r1 <- numer(R,a,c,q)
                                                r2 <- denom(R,a,c,q)
                                                change <- r1/r2
                                                a <- a - change
                                }
    a
                }

                bisect <- function(R, c, q, lower, upper, con){
                                f <- function(a) sum((1 - (1-R)^a)^(1/a)) - c * 
q
                                if(f(lower) * f(upper) > 0)
                                                stop("endpoints must have 
opposite signs")
                                while(abs(lower-upper) > con){
                                                x = .5 * (lower+upper)
                                                if(f(x) * f(lower) >=0) lower = 
x
                                                else upper = x
                                }
    .5 * (lower+upper)
   }

                if(rfa == 'nr'){
                                if(any(correctClsMat==1)) 
correctClsMat[correctClsMat==1]<-.9999 else correctClsMat
                                if(any(correctClsMat==0)) 
correctClsMat[correctClsMat==0]<-.0001 else correctClsMat
                                a <- aConst(R,c,q, con)
    } else if(rfa == 'uni'){
                                f <- function(R, a, c, q) sum((1 - 
(1-R)^a)^(1/a)) - c * q
                                a <- uniroot(f, c(lower,upper), R = R, c = c, q 
= q)$root
                } else if(rfa == 'bsct'){
                                a <- bisect(R, c, q, lower = lower, upper = 
upper, con)
                }

                result <- (1-(1-R)^a)^(1/a)
                result
} # end pCorr function

                stuProbs <- matrix(0, ncol=ncol(dat), nrow=nrow(dat))
                for(i in 1:ncol(dat)){
                                if(correctStuMat[i]==1){
                                                stuProbs[,i] <- 1
                                } else if(correctStuMat[i]==0){
                                                stuProbs[,i] <- 0
                                } else {
                                stuProbs[,i] <- pCorr(correctClsMat, 
correctStuMat[i], q = length(key))
                                }
    }

                stuProbs[which(is.na(dat))] <- NA # this is a bit kludgy. But, 
it places NAs in the right place

                matchProb <- function(StuMat, wrongMat, numItems){
                ind <- combn(c(1:ncol(StuMat)),2) # These are all the possible 
combinations
                result <- matrix(0, ncol=ncol(ind), nrow=numItems)
                for(j in 1:ncol(ind)){
                                for(i in 1:numItems){
                                                if(is.na(StuMat[i,ind[1,j]]) | 
is.na(StuMat[i,ind[2,j]]) ) {
                                                                result[i,j] <- 
NA
                                                                } else { 
result[i,j] <- StuMat[i,ind[1,j]] * StuMat[i,ind[2,j]] +
                                                                
(1-StuMat[i,ind[1,j]]) * (1-StuMat[i,ind[2,j]]) * sum(wrongChoice[[i]]^2)
                                                }
                                }
                }
                result <- data.frame(result)
                names(result) <- paste('S',paste(ind[1,], ind[2,], sep=''), 
sep='')
                result
                }

                aa <- matchProb(stuProbs, wrongChoice, numItems = nrow(dat))

                matchTotal <- function(dat){
                ind <- combn(c(1:ncol(dat)),2) # These are all the possible 
combinations
                Match <- numeric(ncol(ind))
                for(j in 1:ncol(ind)){
                                Match[j] <- sum(dat[, ind[1,j]] == dat[, 
ind[2,j]], na.rm=TRUE) ### added this just now
    }
                Match <- data.frame(Match)
                row.names(Match) <- paste('S',paste(ind[1,], ind[2,], sep=':'), 
sep='')
                Match
                }

                exactMatch <- matchTotal(dat)
                means <- colSums(aa, na.rm=TRUE)
                vars <- colSums(aa*(1-aa), na.rm= TRUE)
                cheaters <- (exactMatch - .5 - means)/sqrt(vars)
                totalCompare <- nrow(cheaters)
                if(bonf == 'yes'){
                                alpha <- alpha/nrow(cheaters)
                                Zcrit <- qnorm(alpha, mean = 0, sd = 1, 
lower.tail = FALSE)
                                } else {
        Zcrit <- qnorm(alpha, mean = 0, sd = 1, lower.tail = FALSE)
    }

                cheaters <- cbind(data.frame(cheaters), exactMatch)
                names(cheaters)[1] <- 'Zobs'
                names(cheaters)[2] <- 'Nexact'
                cheaters$Zcrit <- Zcrit
                cheaters$Mean <- means
                cheaters$Var <- vars
                cheaters <- subset(cheaters, Zobs >= Zcrit)
                result <-  list("pairs" = c(row.names(cheaters)), "Ncheat" = 
nrow(cheaters),
                "TotalCompare" = totalCompare, "alpha" = alpha,
                "ExactMatch" = cheaters$Nexact, "Zobs" = cheaters$Zobs, "Zcrit" 
= Zcrit,
                "Mean" = cheaters$Mean, "Variance" = cheaters$Var, "Probs" = 
stuProbs)
                result
}

plot.jml <- function(x, ask = TRUE, all = TRUE, item, ...){
                par(ask = ask)
                xvals <- seq(from=-5, to =5, by=.01)
                params <- coef(x)
                L <- length(params)
                tmp <- data.frame(x$model.frame)
                tmp$Raw.Score <- rowSums(tmp)
                mle <- summary(scoreCon(coef(x)))$coef[c(1,3)]
                tmp <- merge(tmp, mle, by='Raw.Score', sort = FALSE)
                if(all){
                                for(i in 1:L ){
                                                exp <- 1/(1 + exp(params[i] - 
xvals))
                                                prop.correct <- 
subset(data.frame(prop.table(table(tmp[, i+1], tmp$Estimate), margin=2)),
                                                Var1 == 1)[, 2:3]
                                                names(prop.correct)[1:2] <- 
c('Estimate', 'prop')
                                                prop.correct$Estimate <- 
as.numeric(levels(prop.correct$Estimate))
                                                plot(xvals, exp, type='l', ylim 
= c(0,1), xlab = 'Ability', ylab = 'Proportion Correct', ...)
                                                points(prop.correct$Estimate, 
prop.correct$prop, ...)
                                                title(main = paste("Plot of 
Item", i))
                                }
                } else {
                                par(ask = FALSE)
                                i <- item
                                exp <- 1/(1 + exp(params[i] - xvals))
                                prop.correct <- 
subset(data.frame(prop.table(table(tmp[, i+1], tmp$Estimate), margin=2)),
                                Var1 == 1)[, 2:3]
                                names(prop.correct)[1:2] <- c('Estimate', 
'prop')
                                prop.correct$Estimate <- 
as.numeric(levels(prop.correct$Estimate))
                                plot(xvals, exp, type='l', ylim = c(0,1), xlab 
= 'Ability', ylab = 'Proportion Correct', ...)
                                points(prop.correct$Estimate, 
prop.correct$prop, ...)
                                title(main = paste("Plot of Item", i))
                }
                par(ask = FALSE)
}

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to