Hi,

 

 

I would like estimate a model for function of production's Coob-Douglas using 
maximum likelihood. The model is log(Y)= beta[1]+beta[2]*log(L)+beta[3]*log(K). 
I tried estimate this model using the tools nlm ( ) and optim ( ) using the 
log-likelihood function below:

 

> mloglik <- function (beta, Y, L, K) {
+ n <- length(Y)
+ sum ( (log(Y)- beta[1]-beta[2]*log(L)-beta[3]*log(K))^2)/2*beta[4]^2 + 
n/2*log(2*pi)+ n*log(beta[4])
+ }

 

Then I did estimates the parameters using nlm ( ) and optim ( ), but the 
estimates were very bad. I used these codes:

 

> mlem <- nlm (mloglik, c(1,1,1,1), Y=Y, L=L, K=K)

 

> mlem2 <- optim(c(1,1,1,1), mloglik, Y=Y, L=L, K=K, method="BFGS")

 

How I improve the estimates???? What's the best and more simple form for 
estimate a modelo using the  maximum likelihood's method???

 

Best regards,

 

André Barbosa Oliveira

Student of Master in Economics at University Federal of Rio Grande do Sul - 
Brazil 
                                          
_________________________________________________________________
Novo windowslive.com.br. Descubra como juntar a galera com os produtos Windows 
Live.


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to