Dave, You should look at the train() function in teh caret package.
Max On Mon, Nov 2, 2009 at 6:01 PM, Armitage, Dave <dave.armit...@ufl.edu> wrote: > Greetings, > > I am having trouble calculating artificial neural network misclassification > errors using errorest() from the ipred package. I have had no problems > estimating the values with randomForest() or svm(), but can't seem to get it > to work with nnet(). I believe this is due to the output of the > predict.nnet() function within cv.factor(). Below is a quick example of the > problem I'm experiencing. Any ideas on how to get around it or will it > simply not work with nnet()? > >> library(MASS) >> library(nnet) >> library(ipred) >> data(iris3) >> set.seed(191) >> >> samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25)) >> ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), > > + species = factor(c(rep("s",50), rep("c", 50), rep("v", 50)))) >> >> errorest(species ~., data = ird, subset = samp, model = nnet, size = 2, >> rang =0.1, decay = 5e-4, maxit = 200) > > # weights: 19 > initial value 73.864441 > . > . > . > final value 0.339114 > converged > Error in cv.factor(y, formula, data, model = model, predict = predict, : > predict does not return factor values > > > > Thanks, > Dave > ______________________________________ > > Dave Armitage > Wildlife Ecology and Conservation > University of Florida > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > -- Max ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.