Building on the two prior suggestions ( str() and methods() ) you could write a function to get both the named components of an object and the functions that work on its class. Using the example lm.D9 in the help page for lm:

get_mths_str <- function(obj) c(functs = list(methods(class=class(obj))),
                                components=list(names(lm.D9))
                               )

> get_mths_str(lm.D9)
$functs
[1] add1.lm* addterm.lm* alias.lm* anova.lm attrassign.lm* [6] boxcox.lm* case.names.lm* confint.lm* cooks.distance.lm* deviance.lm* [11] dfbeta.lm* dfbetas.lm* drop1.lm* dropterm.lm* dummy.coef.lm* [16] effects.lm* extractAIC.lm* family.lm* formula.lm* hatvalues.lm [21] influence.lm* kappa.lm labels.lm* logLik.lm* logtrans.lm* [26] model.frame.lm model.matrix.lm plot.lm predict.lm print.lm [31] proj.lm* residuals.lm rstandard.lm rstudent.lm simulate.lm*
[36] summary.lm         variable.names.lm* vcov.lm*

   Non-visible functions are asterisked

$components
[1] "coefficients" "residuals" "effects" "rank" "fitted.values" "assign" [7] "qr" "df.residual" "contrasts" "xlevels" "call" "terms"
[13] "model"

--
David

On Oct 10, 2009, at 8:43 AM, Gabor Grothendieck wrote:

Try this (where "lm" is the class of the lm output):

methods(class = "lm")
[1] add1.lm* alias.lm* anova.lm case.names.lm* [5] confint.lm* cooks.distance.lm* deviance.lm* dfbeta.lm* [9] dfbetas.lm* drop1.lm* dummy.coef.lm* effects.lm* [13] extractAIC.lm* family.lm* formula.lm* hatvalues.lm [17] influence.lm* kappa.lm labels.lm* logLik.lm* [21] model.frame.lm model.matrix.lm plot.lm predict.lm [25] print.lm proj.lm* residuals.lm rstandard.lm [29] rstudent.lm simulate.lm* summary.lm variable.names.lm*
[33] vcov.lm*

  Non-visible functions are asterisked


On Sat, Oct 10, 2009 at 3:21 AM, Robert Wilkins <robst...@gmail.com> wrote:
Am I asking for too much:
for any object that a stat proc returns ( y <- lm( y~x) , etc ) ) , is there a super convenient function like give_all_extractors( y ) that lists all
extractor functions , the datatype returned , and a text descriptor
field ("pairwisepval" "lsmean" etc)

That would just be so convenient.

What are my options for querying an object so that I can quickly learn
the extractor functions to pull out the data and manipulate it?
Will the datatypes returned usually be named vectors and named
matrices, indiced by categorical values in the data
( "Male" "Female" "Placebo" "DrugB" etc )? If they are indexed by 1 ,
2 , 3 , 4 , it's easier to lose track.

thanks a bunch in advance
--


David Winsemius, MD
Heritage Laboratories
West Hartford, CT

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to