Here is a solution assuming that all files have the same structure and a variable TimePoint which contains the time info.
CombinedData <- do.call(rbind, lapply(seq_len(20), function(i){ fileName <- paste("output", i, ".dat", sep="") read.table(fileName, header=TRUE) })) library(plyr) ddply(CombinedData, "TimePoint", colMeans) #another option library(reshape) recast(CombinedData, TimePoint + variable ~ ., id.var = TimePoint, fun = mean) HTH, Thierry ------------------------------------------------------------------------ ---- ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest Cel biometrie, methodologie en kwaliteitszorg / Section biometrics, methodology and quality assurance Gaverstraat 4 9500 Geraardsbergen Belgium tel. + 32 54/436 185 thierry.onkel...@inbo.be www.inbo.be To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data. ~ John Tukey -----Oorspronkelijk bericht----- Van: r-help-boun...@r-project.org [mailto:r-help-boun...@r-project.org] Namens Ed Long Verzonden: woensdag 2 september 2009 14:55 Aan: r-help@r-project.org Onderwerp: [R] Average over data sets Hello, I have a number of files output1.dat, output2.dat, ... , output20.dat, each of which monitors several variables over a fixed number of timepoints. From this I want to create a data frame which contains the mean value between all files, for each timepoint and each variable. The code below works, but it seems like I should be able to do the second part without a for loop. I played with sapply(myList, mean), but that seems to take the mean between time points and files, rather than just between files. #Number of files to calculate mean value between numberOfRuns = 20; myList = list(); for (i in 1:numberOfRuns) { #Read in file fileName = paste("output", i, ".dat", sep=""); myData = read.table(fileName, header=TRUE); #Append data frame to list myList[[i]] = myData; } #Create variable to store data means myAverage = myList[[1]]/numberOfRuns; for (i in 2:numberOfRuns) { myAverage = myAverage + myList[[i]]/numberOfRuns; } Is a list of data frames a sensible structure to store this or should I use an array? Any pointers gratefully received. Ed Long ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Druk dit bericht a.u.b. niet onnodig af. Please do not print this message unnecessarily. Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document. The views expressed in this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.