Here is an example closer to yours. > library(dyn) > set.seed(123) > x <- zooreg(rnorm(10)) > y <- zooreg(rnorm(10)) > L <- function(x, k = 1) lag(x, k = -k) > mod <- dyn$lm(y ~ L(y) + L(x, 0:2)) > mod
Call: lm(formula = dyn(y ~ L(y) + L(x, 0:2))) Coefficients: (Intercept) L(y) L(x, 0:2)1 L(x, 0:2)2 L(x, 0:2)3 0.06355 -0.74540 0.63649 0.44957 -0.41360 > newdata <- cbind(x = c(coredata(x), rnorm(1)), y = c(coredata(y), rnorm(1))) > newdata <- zooreg(newdata) > predict(mod, newdata) 1 2 3 4 5 6 7 NA NA 0.9157808 0.6056333 -0.5496422 1.5984615 -0.2574875 8 9 10 11 12 13 -1.6148859 0.3329285 -0.5284646 -0.1799693 NA NA On Thu, Jul 23, 2009 at 1:04 AM, Gabor Grothendieck<ggrothendi...@gmail.com> wrote: > Use dyn.predict like this: > >> library(dyn) >> x <- y <- zoo(1:5) >> mod <- dyn$lm(y ~ lag(x, -1)) >> predict(mod, list(x = zoo(6:10, 6:10))) > 7 8 9 10 > 7 8 9 10 > > > On Thu, Jul 23, 2009 at 12:54 AM, Hongwei Dong<pdxd...@gmail.com> wrote: >> I have a dynamic time series model like this: >> dyn$lm( y ~ lag(y,-1) + x + lag(x,-1)+lag(x,-2) ) >> >> I need to do an out of sample forecast with this model. Is there any way I >> can do this with R? >> It would be greatly appreciated if some one can give me an example. Thanks. >> >> >> Harry >> >> [[alternative HTML version deleted]] >> >> ______________________________________________ >> R-help@r-project.org mailing list >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.