Dear all,
When doing nonlinear regression, we normally use nls if e are iid normal. i learned that if the form of the variance of e is not completely known, we can use the IRWLS (Iteratively Reweighted Least Squares ) algorithm: for example, var e*i =*g0+g1*x*1 1. Start with *w**i = *1 2. Use least squares to estimate b. 3. Use the residuals to estimate g, perhaps by regressing e^2 on *x*. 4. Recompute the weights and goto 2. Continue until convergence i was wondering whether there is a instruction of R to do this? [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.