Dear all, Even after a couple of hours looking at old messages I still haven't found a solution for my problem. I'm trying to fit an additive linear regression model with 2 effects, both fixed, to some dataset. The function contrasts(effectA) <- contr.sum can gaurantee that the coefficients per parameter sum to one, and the function dummy.coef provices the estimates of all coefficientss. But I would also like to be able to obtain the corresponding t-values for ALL parameters (not just the number of effects minus 1, provided by summary()). Does anyone know how to get (all of) them?
Here comes what I've already tried: ## Try data: > Data <- rbinom(1000,50,.9); > Dates <- Sys.Date()-(1000:1) > facweek <- factor(weekdays(Dates,abbreviate=TRUE)) > facmonth <- factor(months(Dates,abbreviate=TRUE)) > contrasts(facweek) <- contr.sum ; > contrasts(facmonth) <- contr.sum ; > fit <- lm(formula = Data ~ facweek + facmonth) > summary(fit) Call: lm(formula = Data ~ facweek + facmonth) Residuals: Min 1Q Median 3Q Max -8.7498 -1.3774 0.1778 1.5108 5.1643 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 45.01452 0.06976 645.252 <2e-16 *** facweek1 -0.37114 0.16836 -2.204 0.0277 * facweek2 0.40360 0.16836 2.397 0.0167 * facweek3 -0.19918 0.16885 -1.180 0.2384 facweek4 -0.13689 0.16834 -0.813 0.4163 facweek5 -0.07049 0.16835 -0.419 0.6755 facweek6 0.40974 0.16836 2.434 0.0151 * facmonth1 -0.12046 0.22053 -0.546 0.5850 facmonth2 -0.10832 0.26155 -0.414 0.6789 facmonth3 0.25281 0.21731 1.163 0.2450 facmonth4 0.40161 0.22627 1.775 0.0762 . facmonth5 -0.37409 0.21731 -1.721 0.0855 . facmonth6 0.06645 0.26155 0.254 0.7995 facmonth7 0.13627 0.22509 0.605 0.5451 facmonth8 -0.04789 0.21731 -0.220 0.8256 facmonth9 -0.22910 0.21731 -1.054 0.2920 facmonth10 0.11752 0.22053 0.533 0.5942 facmonth11 -0.27233 0.21731 -1.253 0.2104 --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Residual standard error: 2.174 on 982 degrees of freedom Multiple R-squared: 0.02673, Adjusted R-squared: 0.009879 F-statistic: 1.586 on 17 and 982 DF, p-value: 0.06097 > print(dummy.coef(fit),digits=3) Full coefficients are (Intercept): 45 facweek: Fri Mon Sat Sun Thu Tue -0.3711 0.4036 -0.1992 -0.1369 -0.0705 0.4097 facmonth: Apr Aug Dec Feb Jan Jul -0.1205 -0.1083 0.2528 0.4016 -0.3741 0.0664 (Intercept): facweek: Wed -0.0357 facmonth: Jun Mar May Nov Oct Sep 0.1363 -0.0479 -0.2291 0.1175 -0.2723 0.1775 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.