Here is one way of doing it:

> x <- read.table(textConnection("site    distance        var1    var2
+ 1       10      1               0
+ 1       20      0               1
+ 1       30      1               2
+ 1       40      3               3
+ 1       50      1               4
+ 2       10      1               1
+ 2       20      2               1
+ 2       30      4               1
+ 2       40      0               1
+ 2       50      1               1
+ n1      10      1               1
+ n1      20      1               0
+ n1      30      1               1
+ n1      40      1               0
+ n1      50      1               1 "), header=TRUE)
> closeAllConnections()
> # split by site, compute cumsum of the data columns
> x.1 <- lapply(split(x, x$site), function(.site){
+     # get the cumsum of data rows (using 3:4 for example)
+     .cum <- do.call(cbind, lapply(.site[,3:4], cumsum))
+     cbind(.site, .cum)
+ })
> # put back together (you can change the column names
> do.call(rbind, x.1)
      site distance var1 var2 var1 var2
1.1      1       10    1    0    1    0
1.2      1       20    0    1    1    1
1.3      1       30    1    2    2    3
1.4      1       40    3    3    5    6
1.5      1       50    1    4    6   10
2.6      2       10    1    1    1    1
2.7      2       20    2    1    3    2
2.8      2       30    4    1    7    3
2.9      2       40    0    1    7    4
2.10     2       50    1    1    8    5
n1.11   n1       10    1    1    1    1
n1.12   n1       20    1    0    2    1
n1.13   n1       30    1    1    3    2
n1.14   n1       40    1    0    4    2
n1.15   n1       50    1    1    5    3

On Wed, Jun 17, 2009 at 11:48 AM, SEUNG CHEON HONG <seungh...@wisc.edu>wrote:

> Dear R-Help List,
>
> I have a question about data manipulation. I tried to make code myself but
> too much for me. I would greatly appreciate your help.
>
> I have data set consisting of site (from 1 to N1) and distance and there
> are several variables (1 to N2) collected from each sampling site. I am
> interested in looking at cumulative sums of each variable based on site and
> distance like below.
>
> Can anyone help create function to do the task? The cumulative sum outputs
> may not be necessarily combined with original data. It will be better to
> have only cumulative sum outputs and indicator variables of interest.
>
> site    distance        var1    …       var(n2) cu.sum.v1       …
> cu.sum.v(n2)
> 1       10      1               0       1               0
> 1       20      0               1       1               1
> 1       30      1               2       2               3
> 1       40      3               3       5               6
> 1       50      1               4       6               10
> 2       10      1               1       1               1
> 2       20      2               1       3               2
> 2       30      4               1       7               3
> 2       40      0               1       7               4
> 2       50      1               1       8               5
> ,,,     ,,,     ,,,     ,,,     ,,,
> n1      10      1               1       1               1
> n1      20      1               0       2               1
> n1      30      1               1       3               2
> n1      40      1               0       4               2
> n1      50      1               1       5               3
>
>
> Thank you very much for reading and time!!!
>
> Steve Hong
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html>
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Jim Holtman
Cincinnati, OH
+1 513 646 9390

What is the problem that you are trying to solve?

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to