The help page for extractPredictions suggests and testing confirms that the function expects a _list_ of models. The predict function is suggested as the method to get predictions from a single model. Giving the argument as a list does work with a single model, however:

> predict(glmmat)
[1] 0.23544700 -0.03144066 0.24465107 0.59015641 0.22073566 0.20842277 0.98223087 0.72512869
 [9]  0.79939904  0.48652752  0.53874162

> extractPrediction(list(glmmat))
   obs        pred  model dataType
1    0  0.23544700 glmnet Training
2    0 -0.03144066 glmnet Training
3    0  0.24465107 glmnet Training
4    0  0.59015641 glmnet Training
5    0  0.22073566 glmnet Training
6    0  0.20842277 glmnet Training
7    1  0.98223087 glmnet Training
8    1  0.72512869 glmnet Training
9    1  0.79939904 glmnet Training
10   1  0.48652752 glmnet Training
11   1  0.53874162 glmnet Training

Invoking it the manner you did would create redundant information since the input was the same as the training set:

> extractPrediction(list(glmmat),testX=x,testY = y)
   obs        pred  model dataType
1    0  0.23544700 glmnet Training
2    0 -0.03144066 glmnet Training
3    0  0.24465107 glmnet Training
4    0  0.59015641 glmnet Training
5    0  0.22073566 glmnet Training
6    0  0.20842277 glmnet Training
7    1  0.98223087 glmnet Training
8    1  0.72512869 glmnet Training
9    1  0.79939904 glmnet Training
10   1  0.48652752 glmnet Training
11   1  0.53874162 glmnet Training
12   0  0.23544700 glmnet     Test
13   0 -0.03144066 glmnet     Test
14   0  0.24465107 glmnet     Test
15   0  0.59015641 glmnet     Test
16   0  0.22073566 glmnet     Test
17   0  0.20842277 glmnet     Test
18   1  0.98223087 glmnet     Test
19   1  0.72512869 glmnet     Test
20   1  0.79939904 glmnet     Test
21   1  0.48652752 glmnet     Test
22   1  0.53874162 glmnet     Test

--
David


On Jun 8, 2009, at 12:53 PM, milton ruser wrote:

Dear Sunny Vic,

I am forwarding it to the list, to help the helpers :-)

bests..
milton

On Mon, Jun 8, 2009 at 12:41 PM, sunny vic <vss.0...@gmail.com> wrote:

Hi Milton,
 here you go

X1=rnorm(11, 50, 10)
X2=rnorm(11, 20, 10)
X3=rnorm(11, 50, 60)
X4=rnorm(11, 10, 2)
X5=rnorm(11, 5, 22)

x<-cbind(X1,X2,X3,X4,X5);
y <- c(0, 0, 0,0,0,0,1,1,1,1,1) ;

tc=trainControl(method="cv", number=10 );
glmmat<-train(x,y,method="glmnet", trControl=tc);
extractPrediction(list(glmmat,testX=x,testY = y));

Error in models[[i]]$finalModel :
 $ operator is invalid for atomic vectors
__________________________________________________

to give you more why I included list in the extractPrediction, without that it looks for a list of models , so I found that in the help and used list
which eliminated that error and is now giving something new.


ERROR without List in extractPrediction

extractPrediction(glmmat,testX=x,testY = y);

Error in models[[1]]$trainingData :
 $ operator is invalid for atomic vectors
_____________________________________________

I am actually trying to get the confusion matrix so I can calculate the
accuracy, sensitivity and specificity of the model

cheers
vss


On Mon, Jun 8, 2009 at 10:42 AM, milton ruser <milton.ru...@gmail.com>wrote:

Hi Sonny Vic,

how about you send a reproducible code?

cheers
milton

On Mon, Jun 8, 2009 at 11:25 AM, sunny vic <vss.0...@gmail.com> wrote:

Hi all
I am using the caret package and having difficulty in obtaining the
results
using regression, I used the glmnet to model and trying to get the
coefficients and the model parameters  I am trying to use the
extractPrediction to obtain a confusion matrix and it seems to be giving
me
errors.


x<-read.csv("x.csv", header=TRUE);
y<-read.csv("y.csv", header=TRUE);
tc=trainControl(method="cv", number=10 );
glmmat<-train(x,y,method="glmnet", trControl=tc);
extractPrediction(list(glmmat,testX=x,testY = y));

any help would be great
thanks
vss

--

David Winsemius, MD
Heritage Laboratories
West Hartford, CT

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to