One approach to this is generating a representative sequence of your x-variable(s) with seq() or expand.grid(). Next use the predict() function to make predictions from your glm object along the sequence. Finally, plot the predictions vs. the new sequence. Putting everything into a dataframe helps.
# generate some data: x <- rnorm(10) y <- x * 2 + rnorm(10, sd=0.5) # plot plot(y ~ x) # generate linear model: l <- lm(y ~ x) # generate sequence along x-var # and predictions d <- data.frame(x.new=seq(from=-1.5, to=1.2, by=0.1)) d$y.new <- predict(l, data.frame(x=d$x.new)) # add to plot: lines(y.new ~ x.new, data=d, lwd=2) Cheers, Dylan On Sun, Jun 7, 2009 at 8:36 PM, Jo Stringer<jstrin...@bses.org.au> wrote: > Hi! > > > I have fitted two glms assuming a poisson distribution which are: > > fit1 <- glm(Aids ~ Year, data=aids, family=poisson()) > > fit2 <- glm(Aids ~ Year+I(Year^2), data=aids, family=poisson()) > > > I am trying to work out how to represent the fitted regression curves of fit1 > and fit2 on the one graph. I have tried: > > graphics.off() > > plot(Aids ~ Year, data = aids) > > > line(glm(Aids ~ Year, data=aids, family=poisson())) > line(glm(Aids ~ Year+I(Year^2), data=aids, family=poisson())) > > but this does not work. > > Can anyone help me? > > Thanks > > Jo > > BSES Limited Disclaimer > > -------------------------------------------------------------------------------- > > This email and any files transmitted with it are confide...{{dropped:15}} > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.