On Jun 6, 2009, at 4:13 AM, Emmanuel Charpentier wrote:

Dear David,

Le vendredi 05 juin 2009 à 16:18 -0400, David Winsemius a écrit :
On Jun 5, 2009, at 3:15 PM, Steven Matthew Anderson wrote:

Anyone know how to get p-values for the t-values from the
coefficients produced in vglm?
Attached is the code and output — see comment added to output to
show where I need p-values


+     print(paste("**********   Using VGAM function gamma2
**********"))
+     modl2<-
vglm(MidPoint~Count,gamma2,data=modl.subset,trace=TRUE,crit="c")
+     print(coef(modl2,matrix=TRUE))
+     print(summary(modl2))


[1] "**********   Using VGAM function gamma2 **********"
VGLM    linear loop  1 :  coefficients =
0.408464609241,  3.255887520104, -0.000220585671
VGLM    linear loop  2 :  coefficients =
2.34723239e-01,  1.28969691e+00, -4.52393778e-05
VGLM    linear loop  3 :  coefficients =
2.19500481e-01,  1.92534895e+00, -3.02160949e-05
VGLM    linear loop  4 :  coefficients =
2.19383151e-01,  2.26845910e+00, -3.00838664e-05
VGLM    linear loop  5 :  coefficients =
2.19383045e-01,  2.34645688e+00, -3.00836087e-05
VGLM    linear loop  6 :  coefficients =
2.19383045e-01,  2.34977070e+00, -3.00836082e-05
VGLM    linear loop  7 :  coefficients =
2.19383045e-01,  2.34977637e+00, -3.00836082e-05
VGLM    linear loop  8 :  coefficients =
2.19383045e-01,  2.34977637e+00, -3.00836082e-05
                log(mu) log(shape)
(Intercept)  2.193830e-01   2.349776
Count       -3.008361e-05   0.000000

Call:
vglm(formula = MidPoint ~ Count, family = gamma2, data = modl.subset,
  trace = TRUE, crit = "c")

Pearson Residuals:
             Min       1Q   Median      3Q     Max
log(mu)    -1.7037 -0.82997 0.072275 0.78520 1.72834
log(shape) -2.5152 -0.32448 0.254698 0.58772 0.70678


######### NEED P-VALUES HERE #########

Perhaps:

dt(summary( modl2 )@coef3[ , 3], 1)

???

1) dt() is the density. didn't you mean pt() ?

Quite right.


2) I'd rather quote 2*min(pt(), 1-pt()) ("bilateral tests", y'know...)
3) The real hitch here is : what are the right DoF ? I do not think
there is an easy answer to *this* one...

Which may be the reason that the summary method was not designed that way?



                                        Emmanuel Charpentier


Coefficients:
                  Value Std. Error  t value
(Intercept):1  2.1938e-01 5.2679e-02  4.16455
(Intercept):2  2.3498e+00 1.7541e-01 13.39574
Count         -3.0084e-05 8.9484e-05 -0.33619

Number of linear predictors:  2

Names of linear predictors: log(mu), log(shape)

Dispersion Parameter for gamma2 family:   1

Log-likelihood: -26.39268 on 123 degrees of freedom

Number of Iterations: 8


Steven Matthew Anderson

Anderson Research, LLC
Statistical Programming and Analysis
SAS (R) Certified Professional
adastr...@mac.com


David Winsemius, MD
Heritage Laboratories
West Hartford, CT

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to