Hello All, as I´m new to R and survival analysis, I´ve got a question about the Design::validate function:
My Code: cox <- cph(Surv(t,status) ~ var1 + var2 + var3, data=data, x=TRUE, y=TRUE, surv=TRUE) cox.val <- validate(cox, B=10, dxy=TRUE, pr=TRUE); My output (cox.val): index.orig training test Dxy -0.3639222921368090891 -0.3591157308750822175 -0.3634294047761231106 R2 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 Slope 1.0000000000000000000 1.0000000000000000000 1.0055508323397084336 D 0.0232804472888947744 0.0226998668193014774 0.0232190381679612834 U -0.0000607553318187988 -0.0000610134584621832 0.0000254159617147094 Q 0.0233412026207135703 0.0227608802777636665 0.0231936222062465713 optimism index.corrected n Dxy 0.0043136739010409269 -0.36823596603785002657 10 R2 0.0000000000000000000 1.00000000000000000000 10 Slope -0.0055508323397084336 1.00555083233970843359 10 D -0.0005191713486598047 0.02379961863755457596 10 U -0.0000864294201768926 0.00002567408835809379 10 Q -0.0004327419284829055 0.02377394454919647515 10 And my question ist about the R2: Why ist the value always 1.0. That doesn´t seem to me like a realistic value. And so I tried to calculate R2 with my own formula: LR <- -2*cox$loglik[2] L0 <- -2*cox$loglik[1] n <- length(data[,"ID"]) R2N <- (1-exp(-LR/n)) / (1-exp(L0/n)) R2N calculated that way is -0.00132314024559236. Can anybody help me to understand the formula to R2 and why the validate-function results in 1.0? Thanks, Andrea. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.