hi, I am using R's "kernlab" package, exactly i am doing classification using ksvm(.) and predict.ksvm(.).I want use of custom kernel. I am getting some error.
# Following R code works (with promotergene dataset): library("kernlab") s <- function(x, y) { sum((x*y)^1.25) } class(s) <- "kernel" data("promotergene") gene <- ksvm(Class ~ ., data = promotergene, kernel = s, C = 10, cross = 5) gene pred<-predict(gene, promotergene[c(6), -1]) # but the same code fails to work with iris dataset library("kernlab") s <- function(x, y) { sum((x*y)^1.25) } class(s) <- "kernel" gene <- ksvm(Species ~ ., data = iris,kernel = s, C = 10, cross = 5) # above code gives the following error: Error in votematrix[i, ret < 0] <- votematrix[i, ret < 0] + 1 : NAs are not allowed in subscripted assignments Thank you very much for your time and attention. Sincerely, Vivek Banaras Hindu University, India. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.