On 4/17/2009 10:43 AM, Alejandro González wrote:
Dear all,
I'm trying to perform a principal components analysis of a sample of individuals, and to plot it in 3D, assigning different colors according to the population each individual belongs to. Given that the matrix I have to use for the PCA cannot contain cualitative variables (here, the population of origin), I have no idea how can I do this in R. ANy help?
Thanks in advance

As long as the order of rows in the matrix is unchanged when you calculate the pc scores, you should be able to use a separate dataframe or vector to give information about each row, and to work out a colour for plotting it.

For example:


X <- matrix(rnorm(1000), 100, 10)
# Make up a fake population based on the first column
popn <- round(X[,1])
colour <- popn - min(popn) + 1
pc <- princomp(X)
library(rgl)
plot3d(pc$scores[,1:3], col=colour)

Duncan Murdoch

Alejandro González
Departamento de Biodiversidad y Conservación
Real Jardín Botánico
Consejo Superior de Investigaciones Científicas

Claudio Moyano, 1
28014 Madrid, Spain

Tel +0034 914203017

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to