Hello benedikt,

You say the slopes differ significantly if the p-value is less than a given threshold, most of the time 0.05.

Please, note that fitting a linear regression through three points is senseless...

Regards,
Alain


Benedikt Niesterok wrote:
Hello R users,
I've used the following help:

"Comparing two regression line slopes"
I knew the method based on the following statement :
t = (b1 - b2) / sb1,b2
where b1 and b2 are the two slope coefficients and sb1,b2 the pooled standard error of the slope (b)

which can be calculated in R this way:
 > df1 <- data.frame(x=1:3, y=1:3+rnorm(3))
 > df2 <- data.frame(x=1:3, y=1:3+rnorm(3))
 > fit1 <- lm(y~x, df1)
 > s1 <- summary(fit1)$coefficients
 > fit2 <- lm(y~x, df2)
 > s2 <- summary(fit2)$coefficients
 > db <- (s2[2,1]-s1[2,1])
 > sd <- sqrt(s2[2,2]^2+s1[2,2]^2)
 > df <- (fit1$df.residual+fit2$df.residual)
 > td <- db/sd
 > 2*pt(-abs(td), df)
Using my data I finally get the value of the test, which is: 2.245e-7.
Do my slopes differ significantly now?
Thanks for help,  Benedikt
--

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


--
Alain Guillet
Statistician and Computer Scientist

SMCS - Institut de statistique - Université catholique de Louvain
Bureau d.126
Voie du Roman Pays, 20
B-1348 Louvain-la-Neuve
Belgium

tel: +32 10 47 30 50

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to