I am new to R and have two scripts written slightly different but should to 
relatively the same thing but my lack of experience with the program I can not 
figure out the what I need to do to correct it.  The first script gives me a 
consistent mean fold change values with every run but can generate negative p 
values for some.  For the second version of the script, the fold changes seem 
to be very random but the p values do not go negative.   I have highlighted the 
differences in the script that I noticed.  I am think some combination of these 
two scripts will work but I am not sure.
 

Version 1

##t test

len_sig_test = length(sig_test)

if(len_sig_test%%2 > 0)

                message("Number of groups for t-test is not paired.")

if(max(sig_test) > group)

                message("Group number for t-test is out of range.")

 

data.norm.test = data.norm.zo                 #normalized data

nrow <- nrow(data.norm.test)

ncol <- ncol(data.norm.test)

 

p.ttest = rep(NA, nrow)                                                
#parametric test -- t test

p.wilcox = rep(NA, nrow)                             #non-parametric test -- 
Mann-Whitney test 

fold.mean <- rep(NA, nrow)

mean.na <- rep(NA, nrow)

mean.nb <- rep(NA, nrow)

 

sig.peak.all = data.norm.test

g_1 = sig_test[1]

g_2 = sig_test[2]                              

 

col_s1 = 1; col_s2 = 1;

for(i in 1:group){

                if(i < g_1)

                                col_s1 = col_s1+group_size[i]

                if(i < g_2)

                                col_s2 = col_s2+group_size[i]

}

col_e1 = col_s1+group_size[g_1]-1

col_e2 = col_s2+group_size[g_2]-1

 

for(i in 1:nrow){

                na.int.norm <- rep(0, group_size[g_1])

                nb.int.norm <- rep(0, group_size[g_2])

                m = 1

                for(j in col_s1:col_e1){

                                na.int.norm[m] <- data.norm.test[i,j]

                                m <- m+1

                }

                 n = 1

                for(j in col_s2:col_e2){

                                nb.int.norm[n] <- data.norm.test[i,j]

                                n <- n+1

                }

                 m_na = mean(na.int.norm, na.rm=TRUE)

                m_nb = mean(nb.int.norm, na.rm=TRUE)

                mean.na[i] = exp(m_na)

                mean.nb[i] = exp(m_nb)

                if(group_size[g_1]-sum(is.na(na.int.norm))>1 && 
group_size[g_2]-sum(is.na(nb.int.norm))>1){

                                fold.mean[i] = mean.na[i]/mean.nb[i]

                                p.ttest[i] = t.test(na.int.norm, 
nb.int.norm)$p.value

                                p.wilcox[i] =  wilcox.test(na.int.norm, 
nb.int.norm)$p.value

                }

                else if(!is.na(m_na) && !is.na(m_nb)){                  #peak 
present in single sample

                                fold.mean[i] = mean.na[i]/mean.nb[i]

                                p.ttest[i] = -1

                                p.wilcox[i] =  -1

                }

                else{

                                if(is.na(m_na)){                                
                #all data are NA in a group

                                                fold.mean[i] = 0.1 + rnorm(1, 
mean=0, sd=0.04)

                                                p.ttest[i] = p.wilcox[i] = 
0.001 + rnorm(1, mean=0, sd=0.002)

                                }else if(is.na(m_nb)){

                                                fold.mean[i] = 10 + rnorm(1, 
mean=0, sd= 4)

                                                p.ttest[i] = p.wilcox[i] = 
0.001 + rnorm(1, mean=0, sd=0.002)

}

}

}

sig.peak.t <- rep(0, nrow)

sig.peak.w <- rep(0, nrow)

 

n.ttest = n.mann = 0

for(i in 1:nrow){

                if(!is.na(p.ttest[i]) & p.ttest[i]<=0.05){

                                n.ttest <- n.ttest+1

                                sig.peak.t[i] = 1

                }

                if(!is.na(p.wilcox[i]) & p.wilcox[i]<=0.05){

                                n.mann <- n.mann+1

                                sig.peak.w[i] = 1

}

}

n.ttest; nrow; n.ttest/nrow*100

n.mann; nrow; n.mann/nrow*100

 

par(mfrow=c(1,1), oma=c(0,0,3,0), mar=c(5,4,4,2))          #t-test

plot(log(fold.mean), -log(p.ttest), xlab="fold change (log)", ylab="p (-log)", 
col="red")

points(log(fold.mean), -log(rep(0.05, nrow)), type='l', col="blue")

Version 1

##t test

len_sig_test = length(sig_test)

if(len_sig_test%%2 > 0)

                message("Number of groups for t-test is not paired.")

if(max(sig_test) > group)

                message("Group number for t-test is out of range.")

 

data.norm.test = data.norm.zo                 #normalized data

nrow <- nrow(data.norm.test)

ncol <- ncol(data.norm.test)

 

p.ttest = rep(NA, nrow)                                                
#parametric test -- t test

p.wilcox = rep(NA, nrow)                             #non-parametric test -- 
Mann-Whitney test 

fold.mean <- rep(NA, nrow)

mean.na <- rep(NA, nrow)

mean.nb <- rep(NA, nrow)

 

sig.peak.all = data.norm.test

g_1 = sig_test[1]

g_2 = sig_test[2]                              

 

col_s1 = 1; col_s2 = 1;

for(i in 1:group){

                if(i < g_1)

                                col_s1 = col_s1+group_size[i]

                if(i < g_2)

                                col_s2 = col_s2+group_size[i]

}

col_e1 = col_s1+group_size[g_1]-1

col_e2 = col_s2+group_size[g_2]-1

 for(i in 1:nrow){

                na.int.norm <- rep(0, group_size[g_1])

                nb.int.norm <- rep(0, group_size[g_2])

                 m = 1

                for(j in col_s1:col_e1){

                                na.int.norm[m] <- data.norm.test[i,j]

                                m <- m+1

                }

                 n = 1

                for(j in col_s2:col_e2){

                                nb.int.norm[n] <- data.norm.test[i,j]

                                n <- n+1

                }

 

                m_na = mean(na.int.norm, na.rm=TRUE)

                m_nb = mean(nb.int.norm, na.rm=TRUE)

                mean.na[i] = exp(m_na)

                mean.nb[i] = exp(m_nb)

                if(group_size[g_1]-sum(is.na(na.int.norm))>1 && 
group_size[g_2]-sum(is.na(nb.int.norm))>1){

                                fold.mean[i] = mean.na[i]/mean.nb[i]

                                p.ttest[i] = t.test(na.int.norm, 
nb.int.norm)$p.value

                                p.wilcox[i] =  wilcox.test(na.int.norm, 
nb.int.norm)$p.value

                }

                else if(!is.na(m_na) && !is.na(m_nb)){                  #peak 
present in single sample

                                fold.mean[i] = mean.na[i]/mean.nb[i]

                                p.ttest[i] = -1

                                p.wilcox[i] =  -1

                }

                else{

                                if(is.na(m_na)){                                
                #all data are NA in a group

                                                fold.mean[i] = 0.1 + rnorm(1, 
mean=0, sd=0.04)

                                                p.ttest[i] = p.wilcox[i] = 
0.001 + rnorm(1, mean=0, sd=0.002)

                                }else if(is.na(m_nb)){

                                                fold.mean[i] = 10 + rnorm(1, 
mean=0, sd= 4)

                                                p.ttest[i] = p.wilcox[i] = 
0.001 + rnorm(1, mean=0, sd=0.002)

}

}

}

sig.peak.t <- rep(0, nrow)

sig.peak.w <- rep(0, nrow)

 

n.ttest = n.mann = 0

for(i in 1:nrow){

                if(!is.na(p.ttest[i]) & p.ttest[i]<=0.05){

                                n.ttest <- n.ttest+1

                                sig.peak.t[i] = 1

                }

                if(!is.na(p.wilcox[i]) & p.wilcox[i]<=0.05){

                                n.mann <- n.mann+1

                                sig.peak.w[i] = 1

}

}

n.ttest; nrow; n.ttest/nrow*100

n.mann; nrow; n.mann/nrow*100

 

par(mfrow=c(1,1), oma=c(0,0,3,0), mar=c(5,4,4,2))          #t-test

plot(log(fold.mean), -log(p.ttest), xlab="fold change (log)", ylab="p (-log)", 
col="red")

points(log(fold.mean), -log(rep(0.05, nrow)), type='l', col="blue")

 

Version 2

##t test

len_sig_test = length(sig_test)

if(len_sig_test%%2 > 0)

                message("Number of groups for t-test is not paired.")

if(max(sig_test) > group)

                message("Group number for t-test is out of range.")

 

data.norm.test = data.norm.zo                 #normalized data

nrow <- nrow(data.norm.test)

ncol <- ncol(data.norm.test)

for(w in 1:nrow){

                for(z in 1:ncol){

                                                if(is.na(data.norm.test[w,z])){

                                                }else 
if(exp(data.norm.test[w,z])==0) {data.norm.test[w,z]=NA

}

}

}

p.ttest = rep(NA, nrow)                                                
#parametric test -- t test

p.wilcox = rep(NA, nrow)                             #non-parametric test -- 
Mann-Whitney test 

fold.mean <- rep(NA, nrow)

mean.na <- rep(NA, nrow)

mean.nb <- rep(NA, nrow)

 

sig.peak.all = data.norm.test

g_1 = sig_test[1]

g_2 = sig_test[2]                              

 

col_s1 = 1; col_s2 = 1;

for(i in 1:group){

                if(i < g_1)

                                col_s1 = col_s1+group_size[i]

                if(i < g_2)

                                col_s2 = col_s2+group_size[i]

}

col_e1 = col_s1+group_size[g_1]-1

col_e2 = col_s2+group_size[g_2]-1

 

for(i in 1:nrow){

                na.int.norm <- rep(0, group_size[g_1])

                nb.int.norm <- rep(0, group_size[g_2])

                 m = 1

                x=0

                for(j in col_s1:col_e1){

                                na.int.norm[m] <- data.norm.test[i,j]

                                if(!is.na(na.int.norm[m])) x<-x+1

                                m <- m+1

                }

                n = 1

                y=0

                for(j in col_s2:col_e2){

                                nb.int.norm[n] <- data.norm.test[i,j]

                                if(!is.na(nb.int.norm[n])) y<-y+1

                                n <- n+1

                }

 

                m_na = mean(exp(na.int.norm), na.rm=TRUE)

                m_nb = mean(exp(nb.int.norm), na.rm=TRUE)

                mean.na[i] = m_na

                mean.nb[i] = m_nb

                if(group_size[g_1]-sum(is.na(na.int.norm))>1 && 
group_size[g_2]-sum(is.na(nb.int.norm))>1&& x!=1 && y!=1 && x !=0 && y !=0){

                                fold.mean[i] = mean.na[i]/mean.nb[i]

                                p.ttest[i] = t.test(exp(na.int.norm), 
exp(nb.int.norm))$p.value

                                p.wilcox[i] = wilcox.test(exp(na.int.norm), 
exp(nb.int.norm))$p.value

                }else{

                                                if(is.na(m_na)){                
                                #all data are NA in a group

                                                fold.mean[i] = max(0.1, (0.1 + 
rnorm(1, mean=0, sd=0.1)))

                                              p.ttest[i] = p.wilcox[i] = 0.0001 
+ abs(rnorm(1, mean=0, sd=0.0001))

                                                }else if(is.na(m_nb)){

                                              fold.mean[i] = 10 + rnorm(1, 
mean=0, sd=1)

                                             p.ttest[i] = p.wilcox[i] = 0.0001 
+ abs(rnorm(1, mean=0, sd=0.0001))

                                             }else if( x==1) fold.mean[i] = 
max(0.1, (0.1 + rnorm(1, mean=0, sd=0.1)))

    p.ttest[i] = p.wilcox[i] = 0.0001 + abs(rnorm(1, mean=0, sd=0.0001))

                                                }else if(y==1){

                                                                fold.mean[i] = 
10 + rnorm(1, mean=0, sd=1)

                                                                p.ttest[i] = 
p.wilcox[i] = 0.0001 + abs(rnorm(1, mean=0, sd=0.0001))

                                                                }

                                }

}

 sig.peak.t <- rep(0, nrow)

sig.peak.w <- rep(0, nrow)

 

n.ttest = n.mann = 0

for(i in 1:nrow){

                if(!is.na(p.ttest[i]) & p.ttest[i]<=0.05){

                                n.ttest <- n.ttest+1

                                sig.peak.t[i] = 1

                }

                if(!is.na(p.wilcox[i]) & p.wilcox[i]<=0.05){

                                n.mann <- n.mann+1

                                sig.peak.w[i] = 1

                }

}

n.ttest; nrow; n.ttest/nrow*100

n.mann; nrow; n.mann/nrow*100

par(mfrow=c(1,1), oma=c(0,0,3,0), mar=c(5,4,4,2))          #t-test

plot(log(fold.mean), -log(p.ttest), xlab="fold change (log)", ylab="p (-log)", 
col="red")

points(log(fold.mean), -log(rep(0.05, nrow)), type='l', col="blue")


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to