Are you just trying to obtain a combination from 25 possible terms? If so, then just sample the number you want and convert the number to binary:
> sample(33554432,100) [1] 6911360 5924262 23052661 12888381 25831589 16700013 24079278 33282839 12751862 26086726 31363494 7118320 21866536 4212929 [15] 8966435 12955834 449305 12830805 29181967 11420211 16175915 20118079 16560488 6248422 27762022 22430005 26650247 3621985 [29] 24283690 13800068 27546362 21711718 26270840 18556802 17774422 26486373 782865 16013167 24572344 23244187 16026237 28897360 [43] 14700082 8214024 2371593 3337527 10612303 17402454 22213173 13650936 30630988 9851680 15403666 11153297 21839554 8657593 [57] 16057288 25713076 2826853 29370859 11377380 28166893 11632747 11199608 15983665 29937151 29002363 13085852 26082502 32232925 [71] 14584722 23907975 13421556 10916983 25403574 6801209 23861215 4083294 8237209 4808486 8040610 1977505 21551566 29402643 [85] 26135975 26753178 15276437 13760103 27208220 20298140 21968831 11851302 9068401 33308858 21256448 7154058 4341004 16042933 [99] 31006704 20091025 This is a 100 samples and you can convert each of the numbers to binary and the bits will tell you might elements to combine. On Mon, Apr 6, 2009 at 11:39 AM, jasper slingsby <jsling...@gmail.com> wrote: > > Hello > > I apologise for the length of this entry but please bear with me. > > In short: > I need a way of subsampling communities from all possible communities of n > taxa taken 1:n at a time without having to calculate all possible > combinations (because this gives me a memory error - using > combn() or expand.grid() at least). Does anyone know of a function? Or can > you help me edit the > combn > or > expand.grid > functions to generate subsamples? > > In long: > I have been creating all possible communities of n taxa taken 1:n at a time > to get a presence/absence matrix of species occurrence in communities as > below... > > Rows are samples, columns are species: > > A B C D . . . . > 1 0 1 1 1 0 0 0 1 1 1 1 0 0 > 0 0 > 0 1 1 1 1 0 0 0 1 1 1 1 0 0 > 0 0 > 1 1 1 1 1 0 0 0 1 1 1 1 0 0 > 0 0 > 0 0 0 0 0 1 0 0 1 1 1 1 0 0 > 0 0 > 1 0 0 0 0 1 0 0 1 1 1 1 0 0 > 0 0 > 0 1 0 0 0 1 0 0 1 1 1 1 0 0 > 0 0 > 1 1 0 0 0 1 0 0 1 1 1 1 0 0 > 0 0 > 0 0 1 0 0 1 0 0 1 1 1 1 0 0 > 0 0 > > ...but the number of possible communities increases exponentially with each > added taxon. > > n<-11 #number of taxa > sum(for (i in 0:n) choose(i, k = 0:i)) #number of combos > > So all possible combinations of 11 taxa taken 1:11 at a time is 2048, all > combos of 12 taken 1:12 is 4096, 13 taken 1:13 = 8192...etc etc such that > when I reach about 25 taken 1:25 the number of combos is 33554432 and I get > a memory error. > > I have found that the number of combos of x taxa taken from a pool of n > creates a very kurtotic unimodal distribution,... > > x<-vector("integer",20) > for (i in 1:20) {x[i]<-choose(20,i)} > plot(x) > > ...but have found that limiting the number of samples for any community size > to 1000 is good enough for the further analyses I wish to do. > My problem lies in sampling all possible combos without having to calculate > all possible combos. I have tried two methods but both give memory errors at > about 25 taxa. > > The expand.grid() method: > > n <- 11 > toto <- vector("list",n) > titi <- lapply(toto,function(x) c(0,1)) > tutu <- expand.grid(titi) > > The combn() method (a slightly lengthlier function): > > samplecommunityD<- function(n,numsamples) > { > super<-mat.or.vec(,n) > for (numspploop in 1:n) > { > minor<-t(combn(n,numspploop)) > if (dim(minor)[1]<numsamples) > { > minot<-mat.or.vec(dim(minor)[1],n) > for (loopi in 1:dim(minor)[1]) > { > for (loopbi in 1:dim(minor)[2]) > { > minot[loopi,minor[loopi,loopbi]] <- 1 > } > } > super<-rbind(super,minot) > rm(minot) > } > else > { > minot<-mat.or.vec(numsamples,n) > for (loopii in 1:numsamples) > { > thousand<-sample(dim(minor)[1],numsamples) > for (loopbii in 1:dim(minor)[2]) > { > minot[loopii,minor[thousand[loopii],loopbii]] <- 1 > } > } > super<-rbind(super,minot) > rm(minot) > } > } > super<-super[!rowSums(super)>n-1&!rowSums(super)<2,] > return(super) > } > > samplecommunityD(11,1000) > > > So unless anyone knows of another function I could try my next step would be > to modify the combn or expand.grid functions to generate subsamples, but > their coding beyond me at this stage (I'm a 3.5 month newbie). Can anyone > identify where in the code I would need to introduce a sampling term or > skipping sequence? > > Thanks for your time > Jasper > > -- > View this message in context: > http://www.nabble.com/how-to-subsample-all-possible-combinations-of-n-species-taken-1%3An-at-a-time--tp22911399p22911399.html > Sent from the R help mailing list archive at Nabble.com. > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > -- Jim Holtman Cincinnati, OH +1 513 646 9390 What is the problem that you are trying to solve? ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.