Duncan Murdoch wrote:
On 3/27/2009 11:46 AM, 93354504 wrote:
Hi there,
Given a positive definite symmetric matrix, I can use chol(x) to
obtain U where U is upper triangular
and x=U'U. For example,
x=matrix(c(5,1,2,1,3,1,2,1,4),3,3)
U=chol(x)
U
# [,1] [,2] [,3]
#[1,] 2.236068 0.4472136 0.8944272
#[2,] 0.000000 1.6733201 0.3585686
#[3,] 0.000000 0.0000000 1.7525492
t(U)%*%U # this is exactly x
Does anyone know how to obtain L such that L is lower triangular and
x=L'L? Thank you.
Alex
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
> rev <- matrix(c(0,0,1,0,1,0,1,0,0),3,3)
> rev
[,1] [,2] [,3]
[1,] 0 0 1
[2,] 0 1 0
[3,] 1 0 0
(the matrix that reverses the row and column order when you pre and post
multiply it).
Then
L <- rev %*% chol(rev %*% x %*% rev) %*% rev
is what you want, i.e. you reverse the row and column order of the
Choleski square root of the reversed x:
> x
[,1] [,2] [,3]
[1,] 5 1 2
[2,] 1 3 1
[3,] 2 1 4
> L <- rev %*% chol(rev %*% x %*% rev) %*% rev
> L
[,1] [,2] [,3]
[1,] 1.9771421 0.000000 0
[2,] 0.3015113 1.658312 0
[3,] 1.0000000 0.500000 2
Or just
> r<-3:1
> chol(x[r,r])[r,r]
[,1] [,2] [,3]
[1,] 1.9771421 0.000000 0
[2,] 0.3015113 1.658312 0
[3,] 1.0000000 0.500000 2
(It is after all, just a matter of starting from the other end).
--
O__ ---- Peter Dalgaard Ă˜ster Farimagsgade 5, Entr.B
c/ /'_ --- Dept. of Biostatistics PO Box 2099, 1014 Cph. K
(*) \(*) -- University of Copenhagen Denmark Ph: (+45) 35327918
~~~~~~~~~~ - (p.dalga...@biostat.ku.dk) FAX: (+45) 35327907
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.