Dear R users
I would like to calculate the Cumulative incidence for an event adjusting for competing risks and adjusting for covariates. One way to do this in R is to use the cmprsk package, function crr. This uses the Fine & Gray regression model. However, a simpler and more classical approach would be to implement the Kalbfleisch & Prentice method (1980, p 169), where one fits cause specific cox models for the event of interest and each type of competing risk, and then calculates incidence based on the overall survival. I believe that this is what the cuminc function in the aforementioned package does, but it does not allow to adjust for a vector of covariates. My question is, is there an R package that implements the Kalbfleisch & Prentice method for competing risks with covariates? for example, if k1 is the cause of interest among k competing causes: P_k1(t; x)=P(T<=t, cause=k1|x)=Sum(u=0, ..., u=t) {hazard_k(u;x)*S(u;x)} where S(u;x) = exp{-sum_of_k(sum(hazard_k(u))} I have searched extensively for an implementation of this in many packages, but it appears that more complex approaches are more commonly implemented, such as timereg package. Eleni Rapsomaniki Research Associate Strangeways Research Laboratory Department of Public Health and Primary Care University of Cambridge [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.