This may be somewhat useful, but I might have more later. http://florence.acadiau.ca/collab/hugh_public/index.php?title=R:CheckBinFit
(the code below is copied from the URL above) CheckBinFit <- function(y,phat,nq=20,new=T,...) { if(is.factor(y)) y <- as.double(y) y <- y-mean(y) y[y>0] <- 1 y[y<=0] <- 0 quants <- quantile(phat,probs=(1:nq)/(nq+1)) names(quants) <- NULL quants <- c(0,quants,1) phatD <- rep(0,nq+1) phatF <- rep(0,nq+1) for(i in 1:(nq+1)) { which <- ((phat<=quants[i+1])&(phat>quants[i])) phatF[i] <- mean(phat[which]) phatD[i] <- mean(y[which]) } if (new) plot(phatF,phatD,xlab="phat",ylab="data", main=paste('R^2=',cor(phatF,phatD)^2),...) else points(phatF,phatD,...) abline(0,1) return(invisible(list(phat=phatF,data=phatD))) } On Thu, Mar 12, 2009 at 1:30 PM, Eric Siegel <e...@predictionimpact.com>wrote: > Hi all, > > I'd like to do cross-validation on lm and get the resulting lift > curve/table > (or, alternatively, the estimates on 100% of my data with which I can get > lift). > > If such a thing doesn't exist, could it be derived using cv.lm, or would we > need to start from scratch? > > Thanks! > > -- > Eric Siegel, Ph.D. > President > Prediction Impact, Inc. > > Predictive Analytics World Conference > More info: www.predictiveanalyticsworld.com > LinkedIn Group: www.linkedin.com/e/gis/1005097 > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.