Thank you very much!

It helps a lot. You are right about the NA´s in the coefficients, the model 
needs some simplification.

Thank you again.
-------------------------------------------------------------------------------------------------------------------------------
Pablo Pita Orduna
Grupo de Recursos Marinos y Pesquerías.
Universidade de A Coruña. Campus da Zapateira s/n. E-15071. A Coruña, Spain.
Tel. +34(981) 167000 ext. 2204 Fax. +34(981) 167065.
www.fismare.net/verdeprofundo
www.recursosmarinos.net
  ----- Original Message ----- 
  From: joris meys 
  To: Pablo Pita Orduna 
  Cc: r-help@r-project.org ; jfre...@udc.es ; ppitaord...@gmail.com 
  Sent: Saturday, March 07, 2009 12:28 AM
  Subject: Re: [R] Interpreting GLM coefficients


  One thing I notice immediately is a number of NA values for your 
coefficients. If I were you, I would try a model with less parameters, and use 
the anova() function to compare models, to see if the extra terms really 
improve the model.
  e.g. 
  fit1 <- glm(Y~X1+X2+X3,...)
  fit2 <- glm(Y~X1+X2+X3+X1:X2,...)
  anova(fit1, fit2, test="F") 

  If you checked all these, understanding the interaction terms will be most 
easy if you normalized your numeric data before the analysis. For the 
interpretations, you just fill in some values to get an idea. For example :

  given the model : Y= a+b1*X1+b2*X2+b3*X1*X2

  Say X1 and X2 are numeric :
  interpretation of the main term : "Y increases with b2 for an increase of 1 
unit in X2, given X1 is average".
  interpretation of the interaction term : "For an X1 value of n units from the 
mean, X2 increases with b2+n*b3" (n is negative when value is lower than the 
mean).
  In a Y ~ X2 plot, you can make this visible by plotting 3 different functions 
: one for a low X1 value, one for an average X1 value and one for a high X1 
value. This gives you an indication of the effect of X1 on X2.

  for an interaction between a categorical terms or a categorical and a 
numerical, you follow exact the same reasoning, but keep in mind that the 
reference level represents a 0, and the mentioned level represents a 1. Fill in 
the values in the equation, and you can understand the meaning of the terms. 
Then again, you can plot a seperate function Y~X1 for every level of a certain 
factor.

  This isn't a straight answer on your question, but I'm afraid there is none. 
I hope this helps you with building your model.

  Kind regards.
  Joris


  On Fri, Mar 6, 2009 at 11:04 PM, Pablo Pita Orduna <pp...@udc.es> wrote:

    Hi all,

    I´m fitting GLM´s and I can´t interprete the coefficients when I run a 
model with interaction terms.

    When I run the simpliest model there is no problem:

    Model1<-glm (Fishes ~ Year + I(Year^2) + Kind.Geographic + Kind.Fishers + 
Zone.2 + Hours + Fishers + Month, family = poisson(log)) # Fishes, Year, Hours, 
and Fishers are numeric, Kind.Geographic, Kind.Fishers, Zone.2 and Month are 
factors with 4, 3, 5 and 12 levels respectively.

    Model1$coefficients (whith Helmert contrasts):

      (Intercept)             Year           IYear^2 Kind.Geographic1 
Kind.Geographic2 Kind.Geographic3    Kind.Fishers1    Kind.Fishers2          
Zone.21          Zone.22          Zone.23          Zone.24
     -4.416915e+02     4.758455e-01    -1.270986e-04    -5.436199e-01    
-1.068809e-01    -1.498580e-01     2.958462e-01     1.316589e-01    
-1.328204e-01    -1.605802e-01     5.281869e-03     7.422885e-02
            Hours          Fishers           Month1           Month2         
Month3           Month4           Month5           Month6         Month7        
   Month8           Month9          Month10
     9.772076e-02    -2.709955e-03    -1.586887e-01    -1.887837e-02    
-5.183241e-03     5.870942e-02     7.075386e-02     2.061223e-02     
7.372268e-03    -1.204835e-02    -5.047994e-03     2.441498e-02
          Month11
     -5.665261e-03

    So I can write, for example:

    y = -4.416915e+02 + -1.270986e-04*x^2 + 4.758455e-01*x # And add this 
function to a plot(Year,Fishes).

    My problem is to understand the coefficients for the model with interaction:

    Model2<-glm(Fishes ~ Year + I(Year^2) + Kind.Geographic + Kind.Fishers + 
Zone.2 + Hours + Fishers + Month + Year:Kind.Geographic + Year:Kind.Fishers + 
Year:Zone.2 + Year:Hours + Year:Fishers + Year:Month + Kind.Geographic:Hours + 
Kind.Fishers:Hours + Zone.2:Hours + Hours:Fishers + Hours:Month 
+Kind.Geographic:Fishers + Zone.2:Fishers + Fishers:Month , poisson (log))

    Model2$coefficients (with Helmert contrast):

              (Intercept)                     Year                I(Year^2)     
    Kind.Geographic1         Kind.Geographic2         Kind.Geographic3          
  Kind.Fishers1            Kind.Fishers2
             1.641473e+03            -1.748703e+00             4.664752e-04     
       -6.721427e+00             1.856033e+01          -3.762727e-02            
 2.903564e+01             9.022858e+01
                  Zone.21                  Zone.22                  Zone.23     
             Zone.24                    Hours                  Fishers          
         Month1                   Month2
             8.110814e-02            -1.902803e+01             8.335792e+00     
       -3.661641e+00            -7.824623e+00          7.088065e-01             
2.479387e+03             8.346729e+02
                   Month3                   Month4                   Month5     
              Month6                   Month7                Month8             
      Month9                  Month10
             4.052680e+02             2.384440e+02             1.570644e+02     
        1.032445e+02             7.930499e+01          6.487925e+01             
5.592869e+01             3.888328e+01
                  Month11    Year:Kind.Geographic1    Year:Kind.Geographic2    
Year:Kind.Geographic3       Year:Kind.Fishers1       Year:Kind.Fishers2         
    Year:Zone.21          Year:Zone.22
             4.801656e+01             3.397984e-03            -9.443234e-03     
                  NA            -1.449305e-02            -4.470212e-02          
  -6.269309e-05             9.421045e-03
             Year:Zone.23             Year:Zone.24               Year:Hours     
        Year:Fishers              Year:Month1            Year:Month2            
  Year:Month3              Year:Month4
            -4.184866e-03             1.854810e-03             3.257250e-03     
       -4.103058e-04            -1.264934e+00          -4.255907e-01            
-2.069909e-01            -1.216459e-01
              Year:Month5              Year:Month6              Year:Month7     
         Year:Month8              Year:Month9             Year:Month10          
   Year:Month11   Kind.Geographic1:Hours
            -8.015823e-02            -5.278291e-02            -4.054404e-02     
       -3.313487e-02            -2.846036e-02            -1.973118e-02          
  -2.410902e-02             1.341231e-01
     Kind.Geographic2:Hours   Kind.Geographic3:Hours      Kind.Fishers1:Hours   
   Kind.Fishers2:Hours            Zone.21:Hours            Zone.22:Hours        
    Zone.23:Hours            Zone.24:Hours
             5.806418e-02                       NA             1.318444e-02     
       -1.234521e-01             7.961319e-04          1.622411e-02            
-5.357266e-04             7.749412e-03
            Hours:Fishers             Hours:Month1             Hours:Month2     
        Hours:Month3             Hours:Month4          Hours:Month5             
Hours:Month6             Hours:Month7
            -6.805803e-03             7.971549e+00             2.627090e+00     
        1.403430e+00             7.747360e-01          5.163810e-01             
3.732549e-01             2.827511e-01
             Hours:Month8             Hours:Month9            Hours:Month10     
       Hours:Month11 Kind.Geographic1:Fishers Kind.Geographic2:Fishers 
Kind.Geographic3:Fishers          Zone.21:Fishers
             2.091230e-01             1.057001e-01             1.159929e-01     
                  NA            -3.422994e-02          -3.421851e-03            
           NA            -3.802354e-03
          Zone.22:Fishers          Zone.23:Fishers          Zone.24:Fishers     
      Fishers:Month1           Fishers:Month2           Fishers:Month3          
 Fishers:Month4           Fishers:Month5
             1.618358e-05             4.197350e-04            -8.773088e-05     
        7.806815e-01             2.509529e-01             1.280752e-01          
   7.520139e-02             5.370220e-02
           Fishers:Month6           Fishers:Month7           Fishers:Month8     
      Fishers:Month9          Fishers:Month10        Fishers:Month11
             3.786759e-02             2.936135e-02             2.381810e-02     
        2.422438e-02                       NA                    NA


    I would like to know if it is possible to extract the intercepts and the 
slopes for Year and Year^2 for this Model2.

    Thank you very much for your help.
    
________________________________________________________________________________
    Pablo Pita Orduna
    Grupo de Recursos Marinos y Pesquerías.
    Universidade de A Coruña. Campus da Zapateira s/n. E-15071. A Coruña, Spain.
    Tel. +34(981) 167000 ext. 2204 Fax. +34(981) 167065.
    www.fismare.net/verdeprofundo





    ----------------------------------------------------------------
    Correo enviado usando el servicio de Webmail de la UDC.

    ______________________________________________
    R-help@r-project.org mailing list
    https://stat.ethz.ch/mailman/listinfo/r-help
    PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
    and provide commented, minimal, self-contained, reproducible code.



        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to