For the record

residuals(model)
          1           2           3           4           5
 5.55860143 -0.00073852  2.49255235 -1.41987341 -0.00042425
          6           7           8
-0.94389158  2.72987046 -1.15760836
residuals(model, "pearson")
          1           2           3           4           5
 3.5362e+03 -5.2222e-04  2.3366e+00 -1.0080e+00 -2.9999e-04
          6           7           8
-8.8378e-01  2.4038e+00 -1.1646e+00
fitted(model)
         1          2          3          4          5
1.5994e-08 5.0502e-09 4.9946e-01 1.5873e-02 3.2140e-09
         6          7          8
2.0924e-02 8.0191e-01 6.1900e-01

so according to the model a very rare event occurred.  That is what is
'unrealistic' (and Ben Bolker supposed correctly).

How dispersion should be estimated is a matter of some debate (see e.g. McCullagh and Nelder), but the model here is simply inadequate.


On Mon, 2 Mar 2009, Menelaos Stavrinides wrote:

I am running a binomial glm with response variable the no of mites of two
species y->cbind(mitea,miteb) against two continuous variables (temperature
and predatory mites) - see below. My model shows overdispersion as the
residual deviance is 48.81  on 5  degrees of freedom. If I use quasibinomial
to account for overdispersion the dispersion parameter estimate is  2501139,
which seems unrealistic. Any ideas as to why I am getting such a huge
dispersion parameter?

y<-cbind(psmno,wsmno)
ldhours<-log(idhours+1)
lwpm<-log(wpm2wkb+1)
y
    psmno wsmno
[1,]     1     4
[2,]     0    54
[3,]     8     1
[4,]     0    63
[5,]     0    28
[6,]     4   291
[7,]    46     3
[8,]   117    85
ldhours
[1] 0.000000 2.308567 5.078473 4.875035 2.339399 3.723039 5.572344 5.250384
lwpm
[1] 0.6931472 2.1972246 0.0000000 0.6931472 2.3025851 0.0000000 0.0000000
[8] 0.0000000
model<-glm(y~ldhours+lwpm,binomial)
summary(model)

Call:
glm(formula = y ~ ldhours + lwpm, family = binomial)

Deviance Residuals:
        1           2           3           4           5           6
5.5586025  -0.0007385   2.4925511  -1.4198734  -0.0004242  -0.9438916
        7           8
2.7298663  -1.1576062

Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.4029     1.3705 -10.509  < 2e-16 ***
ldhours       2.8357     0.2656  10.677  < 2e-16 ***
lwpm         -5.1188     1.4689  -3.485 0.000492 ***
---
Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

(Dispersion parameter for binomial family taken to be 1)

   Null deviance: 441.20  on 7  degrees of freedom
Residual deviance:  48.81  on 5  degrees of freedom
AIC: 70.398

Number of Fisher Scoring iterations: 8

model2<-glm(y~ldhours+lwpm,quasibinomial)
summary(model2)

Call:
glm(formula = y ~ ldhours + lwpm, family = quasibinomial)

Deviance Residuals:
        1           2           3           4           5           6
5.5586025  -0.0007385   2.4925511  -1.4198734  -0.0004242  -0.9438916
        7           8
2.7298663  -1.1576062

Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)  -14.403   2167.435  -0.007    0.995
ldhours        2.836    420.015   0.007    0.995
lwpm          -5.119   2323.044  -0.002    0.998

(Dispersion parameter for quasibinomial family taken to be 2501139)

   Null deviance: 441.20  on 7  degrees of freedom
Residual deviance:  48.81  on 5  degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 8

Thanks,
Mel

--
Menelaos Stavrinides
Ph.D. Candidate
Environmental Science, Policy and Management
137 Mulford Hall MC #3114
University of California
Berkeley, CA 94720-3114 USA
Tel: 510 717 5249

        [[alternative HTML version deleted]]



--
Brian D. Ripley,                  rip...@stats.ox.ac.uk
Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
University of Oxford,             Tel:  +44 1865 272861 (self)
1 South Parks Road,                     +44 1865 272866 (PA)
Oxford OX1 3TG, UK                Fax:  +44 1865 272595

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to