Dear R users,
I want to run nested fixed-factor Anova in R on different experiments. In this toy example I have 3 levels of the main factor x1 and 7 levels of the nested factor z1 x1 and continuous response variable y1. x1 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 [38] 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 [75] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 z1 [1] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 [38] 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 [75] 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7. When I run lm on using nested design anov1=lm(c(as.vector(y1)) ~as.factor(x1)+ as.factor(x1)/as.factor(z1)) I get a warning summary(anov1) Coefficients: (14 not defined because of singularities). I get interaction between factors that should not be included because of the nested design. Why R includes them? This is becomes a problem when you apply similar concept to large datasets having, i.e. 100 and 500 main and nested factor levels - the computations become prohibitively slow? Many thanks for your help in advance! Coefficients: (14 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) -0.1759 0.3226 -0.545 0.5869 as.factor(x1)2 -0.1276 0.4473 -0.285 0.7762 as.factor(x1)3 0.6461 0.4785 1.350 0.1802 as.factor(x1)1:as.factor(z1)2 0.1049 0.4473 0.234 0.8151 as.factor(x1)2:as.factor(z1)2 NA NA NA NA as.factor(x1)3:as.factor(z1)2 NA NA NA NA as.factor(x1)1:as.factor(z1)3 NA NA NA NA as.factor(x1)2:as.factor(z1)3 1.1520 0.4473 2.575 0.0116 * as.factor(x1)3:as.factor(z1)3 NA NA NA NA as.factor(x1)1:as.factor(z1)4 NA NA NA NA as.factor(x1)2:as.factor(z1)4 NA NA NA NA as.factor(x1)3:as.factor(z1)4 NA NA NA NA as.factor(x1)1:as.factor(z1)5 NA NA NA NA as.factor(x1)2:as.factor(z1)5 NA NA NA NA as.factor(x1)3:as.factor(z1)5 -0.6841 0.4181 -1.636 0.1052 as.factor(x1)1:as.factor(z1)6 NA NA NA NA as.factor(x1)2:as.factor(z1)6 NA NA NA NA as.factor(x1)3:as.factor(z1)6 -0.6713 0.4562 -1.472 0.1445 as.factor(x1)1:as.factor(z1)7 NA NA NA NA as.factor(x1)2:as.factor(z1)7 NA NA NA NA as.factor(x1)3:as.factor(z1)7 NA NA NA NA ---------------------------------------------- Sergii Ivakhno PhD student Computational Biology Group Cancer Research UK Cambridge Research Institute Li Ka Shing Centre Robinson Way Cambridge CB2 0RE England +44 (0)1223 404293 (O) +44 (0)1223 404128 (F) http://www.compbio.group.cam.ac.uk <http://www.compbio.group.cam.ac.uk/> / This communication is from Cancer Research UK. Our website is at www.cancerresearchuk.org. We are a charity registered under number 1089464 and a company limited by guarantee registered in England & Wales under number 4325234. Our registered address is 61 Lincoln's Inn Fields, London WC2A 3PX. Our central telephone number is 020 7242 0200. This communication and any attachments contain information which is confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not the intended recipient(s) please note that any form of disclosure, distribution, copying or use of this communication or the information in it or in any attachments is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender and delete the email and destroy any copies of it. E-mail communications cannot be guaranteed to be secure or error free, as information could be intercepted, corrupted, amended, lost, destroyed, arrive late or incomplete, or contain viruses. We do not accept liability for any such matters or their consequences. Anyone who communicates with us by e-mail is taken to accept the risks in doing so. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.