Hi folks! I run the following code to get a CI for a Poisson with lambda=12.73
library(MASS) set.seed(125) x <- rpois(100,12.73) lambda_hat<-fitdistr(x, dpois, list(lambda=12))$estimate #Confidence Intervals - Normal Approx. alpha<-c(.05,.025,.01) for(n in 1:length(alpha)) { LowerCI<-mean(x)-(qnorm(1-alpha[n]/2, mean = 0, sd = 1)*sqrt(var(x)/length(x))) UpperCI<-mean(x)+(qnorm(1-alpha[n]/2, mean = 0, sd = 1)*sqrt(var(x)/length(x))) cat("For Alpha=",alpha[n],"LowerCI=",LowerCI,"<","Lambda=",mean(x),"<","UpperCI=",UpperCI,"\n") } When I do something like: qpois(.975, 12.73, lower.tail = TRUE, log.p = FALSE) [1] 20 > qpois(.025, 12.73, lower.tail = TRUE, log.p = FALSE) [1] 6 I get quite a different result. Is this the difference between the normal approx and an (almost) exact Poisson CI? Thx! [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.