Ok... I set up the problem by some code as requested: Example:
x <- rnorm(100) mean_x <- mean(x) mean_boot <- numeric(1000) for (i in 1:1000) { mean_boot[i] <- mean(sample(x,100,replace=TRUE)) } How can I compute the p-Value out of mean_boot for the following tests: 1. H0: mean_x = 0 vs. H1: mean_x != 0 2. H0: mean_x >= 0 vs. H1: mean_x < 0 Is there a possibility to construct such p-Values or did I get something wrong? Someone told, that the p-Value = 2 * min(sum(mean_boot>=0)/1000, sum(mean_boot<0)/1000) for the first (two sided) test is, but didn't get the idea behind it. Maybe someone can explain it, if it is the solution to the problem. Regards, Andreas. --- David Winsemius <dwinsem...@comcast.net> schrieb am Mi, 14.1.2009: > Von: David Winsemius <dwinsem...@comcast.net> > Betreff: Re: [R] How to compute p-Values > An: klein82...@yahoo.de > CC: "r help" <r-help@r-project.org> > Datum: Mittwoch, 14. Januar 2009, 16:40 > I think we are at the stage where it is your responsibility > to provide some code to set up the problem. > > --David Winsemius > On Jan 14, 2009, at 9:23 AM, Andreas Klein wrote: > > > Hello. > > > > What I wanted was: > > > > I have a sample of 100 relizations of a random > variable and I want a p-Value for the hypothesis, that the > the mean of the sample equals zero (H0) or not (H1). That is > for a two sampled test. > > The same question holds for a one sided version, where > I want to know if the mean is bigger than zero (H0) or > smaller or equal than zero (H1). > > > > Therfore I draw a bootstrap sample with replacement > from the original sample and compute the mean of that > bootstrap sample. I repeat this 1000 times and obtain 1000 > means. > > > > Now: How can I compute the p-Value for an one sided > and two sided test like described above? > > > > > > > > Regards, > > Andreas > > > > > > --- gregor rolshausen > <gregor.rolshau...@biologie.uni-freiburg.de> schrieb > am Mi, 14.1.2009: > > > >> Von: gregor rolshausen > <gregor.rolshau...@biologie.uni-freiburg.de> > >> Betreff: Re: [R] How to compute p-Values > >> An: "r help" > <r-help@r-project.org> > >> Datum: Mittwoch, 14. Januar 2009, 11:31 > >> Andreas Klein wrote: > >>> Hello. > >>> > >>> > >>> How can I compute the Bootstrap p-Value for a > one- and > >> two sided test, when I have a bootstrap sample of > a > >> statistic of 1000 for example? > >>> > >>> My hypothesis are for example: > >>> > >>> 1. Two-Sided: H0: mean=0 vs. H1: mean!=0 > >>> 2. One Sided: H0: mean>=0 vs. H1: mean<0 > >>> > >>> > >> hi, > >> do you want to test your original t.test against > t.tests of > >> bootstrapped samples from you data? > >> > >> if so, you can just write a function creating a > vector with > >> the statistics (t) of the single t.tests (in your > case 1000 > >> t.tests each with a bootstrapped sample of your > original > >> data -> 1000 simulated t-values). > >> you extract them by: > >> > >>> tvalue=t.test(a~factor)$statistic > >> > >> then just calculate the proportion of t-values > from you > >> bootstrapped tests that are bigger than your > original > >> t-value. > >> > >>> > p=sum(simualted_tvalue>original_tvalue)/1000 > >> > >> > >> (or did I get the question wrong?) > >> > >> cheers, > >> gregor > >> > >> ______________________________________________ > >> R-help@r-project.org mailing list > >> https://stat.ethz.ch/mailman/listinfo/r-help > >> PLEASE do read the posting guide > >> http://www.R-project.org/posting-guide.html > >> and provide commented, minimal, self-contained, > >> reproducible code. > > > > > > > > > > ______________________________________________ > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, > reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.