Odette Gaston <odette.gaston <at> gmail.com> writes: > > Dear all, > > I have a problem with accessing class attributes. > I was unable to solve this > yet, but someone may know how to solve it.
My best guess at your immediate problem (doing things by hand) is that you're not using the whole vector. From your example: Delta <- c(m1 = 0, m2 = 1.8, m3 = 4.2, m4 = 6.2) exp(-0.5*Delta)/sum(exp(-0.5*Delta)) m1 m2 m3 m4 0.63529363 0.25829111 0.07779579 0.02861947 In general the dRedging package at http://www.zbs.bialowieza.pl/users/kamil/r/ can do these problems (I hate to recommend this package because it offers the danger of thoughtless convenience, but if you really know that you want to enumerate models and do IC-based model averaging it can save a lot of time). At the moment, though, it doesn't work with glmmML-based objects (you could ask the author to extend it). When I tried stepAIC it didn't really enumerate all the models for me (that's not its purpose), so I went through and enumerated by hand. For example; library(glmmML) set.seed(1001) a <- runif(100) b <- runif(100) c <- runif(100) x <- runif(100) n <- rep(20,100) cluster <- factor(rep(1:5,20)) linpred <- a+b+c+x-2 y <- rbinom(100,prob=plogis(linpred),size=n) data <- data.frame(y,a,b,c,x,n) m <- list() ## full model m[[1]] <- glmmML(cbind (y, n-y)~ x+a+b+c, family = binomial, data, cluster) ## 3-term models m[[2]] <- update(m[[1]],.~.-a) ## xbc m[[3]] <- update(m[[1]],.~.-b) ## xac m[[4]] <- update(m[[1]],.~.-c) ## xab m[[5]] <- update(m[[1]],.~.-x) ## abc ## 2-term models m[[6]] <- update(m[[2]],.~.-x) ## bc m[[7]] <- update(m[[2]],.~.-b) ## xc m[[8]] <- update(m[[2]],.~.-c) ## xb m[[9]] <- update(m[[3]],.~.-x) ## ac m[[10]] <- update(m[[3]],.~.-c) ## xa m[[11]] <- update(m[[4]],.~.-x) ## ab ## 0-term models (intercept) m[[12]] <- glmmML(cbind (y, n-y)~ 1, family = binomial, data, cluster) m[[13]] <- update(m[[12]],.~.+a) m[[14]] <- update(m[[12]],.~.+b) m[[15]] <- update(m[[12]],.~.+c) m[[16]] <- update(m[[12]],.~.+x) ## have to define logLik and AIC for glmmML objects logLik.glmmML <- function(x) { loglik <- (-x$deviance)/2 attr(loglik,"df") <- length(coef(x)) loglik } AIC.glmmML <- function(x) x$aic library(bbmle) ## now it works (the answers are pretty trivial ## in this made-up case AICtab(m,sort=TRUE,weights=TRUE,delta=TRUE) ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.