Hi, I would like to estimate coefficients using poisson regression and then get standard errors that are adjusted for heteroskedasticity, using a complex sample survey data. Then I will calculate prevalence ratio and confidence intervals. Can sandwich estimator of variance be used when observations arent independent? In my case, observations are independent across groups (clusters), but not necessarily within groups. Can I calculate the standard errors with robust variance, in complex sample survey data using R?
Outputs: design_tarv<-svydesign(ids=~X2, strata=~X3, data=banco, weights=~X4) banco.glm7 <- svyglm(y ~x1, data = banco, family = poisson (link= "log"), design= design_tarv) summary(banco.glm7) Call: svyglm(y ~ x1, data = banco, family = poisson(link = "log"), design = design_tarv) Survey design: svydesign(ids = ~X2, strata = ~X3, data = banco, weights = ~X4) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.91893 0.04696 -19.570 < 2e-16 *** x1 0.19710 0.06568 3.001 0.00603 ** --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 (Dispersion parameter for poisson family taken to be 0.5722583) Number of Fisher Scoring iterations: 5 library(sandwich) vcovHC(banco.glm7) (Intercept) x1 (Intercept) 4.806945e-13 -4.771409e-13 x1 -4.771409e-13 7.127168e-13 sqrt(diag(vcovHC(banco.glm7, type="HC0"))) (Intercept) x1 6.923295e-07 8.426314e-07 # I think this result isnt correct, because standard errors are so small. Thank you for the help, Roberta Niquini. -- ENSP - Fiocruz ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.