Dear Erin,

What you characterize as "snaky" might also be called bimodal and
short-tailed. Try, e.g., plot(density(residuals(dog1.aov))) to see the
bimodality more clearly. A Box-Cox transformation can correct skewness, but
won't help here.

I hope this helps,
 John

------------------------------
John Fox, Professor
Department of Sociology
McMaster University
Hamilton, Ontario, Canada
web: socserv.mcmaster.ca/jfox


> -----Original Message-----
> From: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED]
On
> Behalf Of Erin Hodgess
> Sent: December-02-08 4:28 PM
> To: r-help@r-project.org
> Subject: [R] QQ plots and boxcox
> 
> Dear R People:
> 
> In the DASL library, there is a story about hot dogs.
> 
> Here are the data:
> Beef  186     495
> Beef  181     477
> Beef  176     425
> Beef  149     322
> Beef  184     482
> Beef  190     587
> Beef  158     370
> Beef  139     322
> Beef  175     479
> Beef  148     375
> Beef  152     330
> Beef  111     300
> Beef  141     386
> Beef  153     401
> Beef  190     645
> Beef  157     440
> Beef  131     317
> Beef  149     319
> Beef  135     298
> Beef  132     253
> Meat  173     458
> Meat  191     506
> Meat  182     473
> Meat  190     545
> Meat  172     496
> Meat  147     360
> Meat  146     387
> Meat  139     386
> Meat  175     507
> Meat  136     393
> Meat  179     405
> Meat  153     372
> Meat  107     144
> Meat  195     511
> Meat  135     405
> Meat  140     428
> Meat  138     339
> Poultry       129     430
> Poultry       132     375
> Poultry       102     396
> Poultry       106     383
> Poultry       94      387
> Poultry       102     542
> Poultry       87      359
> Poultry       99      357
> Poultry       107     528
> Poultry       113     513
> Poultry       135     426
> Poultry       142     513
> Poultry       86      358
> Poultry       143     581
> Poultry       152     588
> Poultry       146     522
> Poultry       144     545
> 
> 
> Here is my work:
> > dog1.df <- read.table(file="dog1.dat",as.is=F,header=F,
> + col.names=c("type","cal","sodium"))
> > dog1.aov <- aov(cal~type,data=dog1.df)
> > summary(dog1.aov)
>             Df  Sum Sq Mean Sq F value    Pr(>F)
> type         2 17692.2  8846.1  16.074 3.862e-06 ***
> Residuals   51 28067.1   550.3
> ---
> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> > TukeyHSD(dog1.aov)
>   Tukey multiple comparisons of means
>     95% family-wise confidence level
> 
> Fit: aov(formula = cal ~ type, data = dog1.df)
> 
> $type
>                    diff       lwr       upr     p adj
> Meat-Beef      1.855882 -16.82550  20.53726 0.9688129
> Poultry-Beef -38.085294 -56.76667 -19.40391 0.0000277
> Poultry-Meat -39.941176 -59.36515 -20.51720 0.0000239
> 
> > plot(dog1.aov)
> 
> When I look at the QQ plot, it's quite "snaky".
> I thought that doing a transformation (based on boxcox) would help
> with the snakiness.
> 
> However, when I re-run with the transformation, it's still snaky.
> 
> Any suggestions, please?
> 
> Thanks,
> Sincerely,
> Erin
> 
> 
> --
> Erin Hodgess
> Associate Professor
> Department of Computer and Mathematical Sciences
> University of Houston - Downtown
> mailto: [EMAIL PROTECTED]
> 
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to