>>>>> "AMT" == Arnau Mir Torres <[EMAIL PROTECTED]> >>>>> on Tue, 14 Oct 2008 17:13:01 +0200 writes: >>>>> "AMT" == Arnau Mir Torres <[EMAIL PROTECTED]> >>>>> on Tue, 14 Oct 2008 17:13:01 +0200 writes:
AMT> Hello. AMT> I need to know how can R compute AIC when I study a regression model? AMT> For example, if I use these data: AMT> growth tannin AMT> 1 12 0 AMT> 2 10 1 AMT> 3 8 2 AMT> 4 11 3 AMT> 5 6 4 AMT> 6 7 5 AMT> 7 2 6 AMT> 8 3 7 AMT> 9 3 8 AMT> and I do AMT> model <- lm (growth ~ tannin) AMT> AIC(model) AMT> R responses: AMT> 38.75990 AMT> I know the following formula to compute AIC: AMT> AIC= -2*log-likelihood + 2*(p+1) AMT> In my example, it would be: AMT> AIC=-2*log-likelihood + 2*2 AMT> but I don't know how R computes log-likelihood: AMT> logLik(model) AMT> 'log Lik.' -16.37995 (df=3) and so? Hint: Your only problem is that your 'p' is wrongly off by one. 2nd Hint: sigma is a parameter, too ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.