You may use kde2d from MASS, with estimates a 2d density
d <- kde2d(z1,z2,h=10^(-(2:9)/2))
plot(z1,z2)
contour(d,add=T)
hth.
biyeshejiqx schrieb:
Hello,everybody,
I used the following codes to generate bivariate normal dependence structure with unit Frechet margins.
Sigma <- matrix(c(1,.5*sqrt(1),.5*sqrt(1),1),2,2) # generate
y <- mvrnorm(Nsam, c(0,0), Sigma) # random
v <- cbind(pnorm(y[,1],mean = 0, sd = 1), pnorm(y[,2],mean = 0, sd = 1))
z <- cbind(-1/log(v[,1]),-1/log(v[,2]))
z1 <- z[,1]
z2 <- z[,2]
And to get the scatter plot by:
plot(z1,z2)
How can I get the contour densities plots for (z1,z2) at 10^(-j/2) for j=2,...,9?
Waiting for your reply!Many thanks!
Xiao
[[alternative HTML version deleted]]
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.