Hi,
I am having problems passing arguments to method="gbm" using the train() function.

I would like to train gbm using the laplace distribution or the quantile distribution.

here is the code I used and the error:

gbm.test <- train(x.enet, y.matrix[,7],
  method="gbm",
  distribution=list(name="quantile",alpha=0.5), verbose=FALSE,
  trControl=trainControl(method="cv",number=5),
  tuneGrid=gbmGrid
)
Model 1: interaction.depth=1, shrinkage=0.1, n.trees=300
collapsing over other values of n.trees
Error in gbm.fit(trainX, modY, interaction.depth = tuneValue$.interaction.depth, :
 formal argument "distribution" matched by multiple actual arguments

The same error occured with distribution="laplace".

I also tried the following without and success :

gbm.test <- train(x.enet, y.matrix[,7],
  method="gbm",
  list(distribution="laplace", verbose=FALSE),
  trControl=trainControl(method="cv",number=2),
  tuneGrid=gbmGrid
)
Model 1: interaction.depth=1, shrinkage=0.1, n.trees=300
collapsing over other values of n.trees
Error in if (is.null(offset) || (offset == 0)) { :
 missing value where TRUE/FALSE needed
In addition: Warning message:
In gbm.fit(trainX, modY, interaction.depth = tuneValue$.interaction.depth, :
 NAs introduced by coercion

Any help would be appreciated.
Cheers
Peter

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to