Hi, you might try this:
set.seed(100) m <- 10 size.a <- 10 prob.a <- 0.3 prior.constant = 0 draw1 = rbinom( m , size.a, prob.a ) beta.draws <- function(draw, size.a, prior.constant, n) { rbeta(n, prior.constant + draw, prior.constant + size.a - draw) } bdraws <- sapply(draw1, beta.draws, size.a = size.a, prior.constant = prior.constant, n = 10000) beta.post <- apply(bdraws, 2, function(x) c(post.mean = mean(x), post.median = median(x)) ) beta.post [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] post.mean 0.2017118 0.1996809 0.2991173 0.10069613 0.3001924 0.2991149 0.4033310 0.2003104 post.median 0.1804893 0.1791630 0.2845427 0.07505278 0.2858155 0.2844503 0.3961419 0.1790511 [,9] [,10] post.mean 0.3013020 0.1990232 post.median 0.2886199 0.1786447 best VĂctor H Cervantes 2008/9/17 Juancarlos Laguardia <[EMAIL PROTECTED]>: > I have a problem in where i generate m independent draws from a binomial > distribution, > say > > draw1 = rbinom( m , size.a, prob.a ) > > > then I need to use each draw to generate a beta distribution. So, like > using a beta prior, binomial likelihood, and obtain beta posterior, m many > times. I have not found out a way to vectorize draws from a beta > distribution, so I have an explicit for loop within my code > > > > for( i in 1: m ) { > > beta.post = rbeta( 10000, draw1[i] + prior.constant , prior.constant + > size.a - draw1[i] ) > > beta.post.mean[i] = mean(beta.post) > beta.post.median[i] = median(beta.post) > > etc.. for other info > > } > > Is there a way to vectorize draws from an beta distribution? > > UC Slug > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.