Yes I'm trying to optimize the parameters a, b, p and lambda where a > 0, b > 0 and 0 < p < 1. I attached the error message that I got when I run mle.
> t <- c(1:90) > y <- > c(5,10,15,20,26,34,36,43,47,49,80,84,108,157,171,183,191,200,204,211,217,226,230, + 234,236,240,243,252,254,259,263,264,268,271,277,290,309,324,331,346,367,375,381, + 401,411,414,417,425,430,431,433,435,437,444,446,446,448,451,453,460,463,463,464, + 464,465,465,465,466,467,467,467,468,469,469,469,469,470,472,472,473,473,473,473, + 473,473,473,475,475,475,475) > > library(stats4) > fr <- function(a, b, p, lambda){ + l <- 0.5*(lambda + b*p + (1-p)*(lambda-b)) + l^2 > lambda*b*p + delta <- sqrt(abs(l^2 - b*p*lambda)) + mt <- a/p*(1-exp(-l*t)*cosh(delta*t)-(l-b*p)*exp(-t)*sinh(delta*t)/delta) + logl <- sum(diff(y)*log(diff(mt))-diff(mt)-lfactorial(diff(y))) + return(-logl) + } > > mle(start=list(a=12,b=0.01,p=0.5,lambda=0.01),fr, method="L-BFGS-B", + lower = c(0.002, 0.002, 0.002, 0.002), upper = c(Inf, Inf, 0.999, Inf),control=list(fnscale=-1)) Error in optim(start, f, method = method, hessian = TRUE, ...) : non-finite finite-difference value [3] Prof Brian Ripley wrote: > >>From ?optim > > fn: A function to be minimized (or maximized), with first > argument the vector of parameters over which minimization is > to take place. It should return a scalar result. > > I think you intended to optimize over c(a,b,p, lambda), so you need to > specify them as a single vector. > > You may be making life unnecessarily hard for yourself: see function mle() > in package stats4. > > Showing your code without a verbal description of what you are doing nor > the error message you got is less helpful than we need. > > On Wed, 3 Sep 2008, toh wrote: > >> >> Hi R-experts, >> I'm new to R in mle. I tried to do the following but just couldn't get it >> right. Hope someone can point out the mistakes. thanks a lot. >> >> t <- c(1:90) >> y <- >> c(5,10,15,20,26,34,36,43,47,49,80,84,108,157,171,183,191,200,204,211,217,226,230, >> >> 234,236,240,243,252,254,259,263,264,268,271,277,290,309,324,331,346,367,375,381, >> >> 401,411,414,417,425,430,431,433,435,437,444,446,446,448,451,453,460,463,463,464, >> >> 464,465,465,465,466,467,467,467,468,469,469,469,469,470,472,472,473,473,473,473, >> 473,473,473,475,475,475,475) >> fr <- function(a, b, p, lambda){ >> l <- 0.5*(lambda + b*p + (1-p)*(lambda-b)) >> l^2 > lambda*b*p >> delta <- sqrt(abs(l^2 - b*p*lambda)) >> mt <- a/p*(1-exp(-l*t)*cosh(delta*t)-(l-b*p)*exp(-t)*sinh(delta*t)/delta) >> logl <- sum(diff(y)*log(diff(mt))-diff(mt)-lfactorial(diff(y))) >> return(-logl) >> } >> optim(c(15,0.01,0.5,0.01),fr, method="L-BFGS-B", >> lower = c(0.002, 0.002, 0.002, 0.002), upper = c(Inf, Inf, 0.999, >> Inf),control=list(fnscale=-1)) >> >> -- >> View this message in context: >> http://www.nabble.com/Maximum-likelihood-estimation-tp19304249p19304249.html >> Sent from the R help mailing list archive at Nabble.com. >> >> ______________________________________________ >> R-help@r-project.org mailing list >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> > > -- > Brian D. Ripley, [EMAIL PROTECTED] > Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ > University of Oxford, Tel: +44 1865 272861 (self) > 1 South Parks Road, +44 1865 272866 (PA) > Oxford OX1 3TG, UK Fax: +44 1865 272595 > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > -- View this message in context: http://www.nabble.com/Maximum-likelihood-estimation-tp19304249p19323140.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.